Rosemount 3051S Series of Instrumentation Scalable Pressure, Flow, and Level Solutions

- Industry leading performance with 0.025\% accuracy
- Industry's first \%-of-reading flow transmitter delivering a 10x performance improvement
- Industry's first installed 10-year stability
- Unprecedented reliability backed by a 12-year limited warranty
- Scalable SuperModule ${ }^{\circledR}$ Platform provides a foundation for integrated pressure, flow, and level solutions
- WirelessHART ${ }^{\text {TM }}$ capabilities extend the full benefits of PlantWeb ${ }^{\circledR}$ to previously inaccessible locations
- Scalable MultiVariable ${ }^{T M}$ Transmitter enables pressure, temperature, and fully compensated mass and energy flow
- Advanced Diagnostics provide process insight to prevent abnormal situations and increase plant productivity

- Safety Certified to IEC 61508

Contents

Rosemount 3051S Scalable Products page 4
Specifications page 6
Certifications
Rosemount 3051S MultiVariable page 20
Rosemount 3051S Coplanar, In-Line, and Liquid Level page 22
Rosemount 3051S Wireless page 25
Dimensional Drawings page 27
Ordering Information
Rosemount 3051S MultiVariable page 39
Rosemount 3051S Coplanar page 43
Rosemount 3051S In-Line page 48
Rosemount 3051S Liquid Level page 52

Success Through Innovative Measurement

Industry Leading Performance with 0.025\% Accuracy
The Rosemount 3051S delivers cutting edge performance beginning with the SuperModule Platform. Among the many advances, Saturn ${ }^{\text {TM }}$ sensing technology incorporates a secondary sensor to optimize performance and expand diagnostic capabilities.

Industry's First \%-of-reading Flow Transmitter

Innovative design combined with patent-pending manufacturing techniques deliver a $10 x$ performance improvement and a wide flow turndown with the Ultra for Flow performance class.

Industry's First Installed 10-year Stability

Stability begins with the all-welded, 316 LST hermetically sealed SuperModule Platform that houses a single electronics board to eliminate moisture and field contaminant effects. See "Long Term Stability" on page 8 for details.
Unprecedented Reliability Backed by a 12-year Limited Warranty
Further enhance installation practices and advanced diagnostic capabilities with the most reliable platform supported by a 12 -year limited warranty. See "Warranty" on page 9 for details.

Safety Certified to IEC 61508

The 3051 S is certified to IEC 61508 for non-redundant use in SIL 1 and SIL 2 Safety Instrumented Systems and redundant use in SIL 3 Safety Instrumented Systems.

Scalable SuperModule Platform

The 3051S powers the PlantWeb architecture by delivering the industry's best field intelligence with advanced diagnostics for HART ${ }^{\circledR}$ and Foundation ${ }^{\text {™ }}$ fieldbus. The Scalable SuperModule Platform provides a foundation for integrated pressure, flow, and level solutions. It allows you to customize performance, functionality, diagnostics, and process connections for your expanding application requirements.

Scalable MultiVariable Capabilities

The Rosemount 3051S MultiVariable Transmitter is the latest enhancement to Emerson's flow offering providing superior calculations including fully compensated mass, energy, and totalized flow. Users can customize a measurement solution for direct variable measurement in any combination of differential pressure, static pressure, and process temperature.

Advanced Diagnostics

The 3051S ASP ${ }^{T M}$ Diagnostics Suite includes Statistical Process Monitoring (SPM), variable logging with time stamp capabilities, and advanced process alerts. These capabilities provide new process insight to prevent abnormal situations.

WirelessHART Capabilities

The Rosemount 3051S Wireless Series of Instrumentation can optimize your facility by providing access to previously cost-prohibitive information. Built on the SuperModule Platform of wired 3051S, these solutions provide proven 3051S performance, reliability and stability.

Rosemount Pressure Solutions

Rosemount 3051S Series of Instrumentation

Highest performing scalable pressure, flow and level measurement solutions drive better plant efficiency and more productivity. Innovative features include wireless, advanced diagnostics, and multivariable technologies.
Rosemount 305, 306 and 304 Manifolds
Factory-assembled, calibrated and seal-tested
transmitter-to-manifold assemblies reduce installation costs.

Rosemount 1199 Diaphragm Seals

Provides reliable, remote measurements of process pressure and protects the transmitter from hot, corrosive, or viscous fluids.
Orifice Plate Primary Element Systems: Rosemount 1495 and 1595 Orifice Plates, 1496 Flange Unions and 1497 Meter Sections
A comprehensive offering of orifice plates, flange unions and meter sections that are easy to specify and order. The 1595 Conditioning Orifice provides superior performance in tight fit applications.

Rosemount 3051SFA Annubar ${ }^{\circledR}$ Flowmeters and Rosemount 485 Annubar Flowmeter Series

The state-of-the-art, fifth generation Rosemount 485 Annubar combined with the Rosemount MultiVariable transmitter technology creates an accurate, repeatable and dependable insertion-type flowmeter.
Rosemount 3051SFC Compact Orifice Flowmeters and Rosemount 405 Compact Orifice Flowmeter Series Compact Orifice Flowmeters can be installed between existing flanges, up to a Class 600 (PN100) rating. A conditioning orifice plate version offers installation in tight fit applications requiring only two diameters of straight run upstream after a flow disturbance.

Rosemount 3051SFP Integral Orifice Flowmeters and Rosemount 1195 Integral Orifice Flowmeter Series

These integral orifice flowmeters eliminate the inaccuracies that become more pronounced in small orifice line installations. The completely assembled, ready to install flowmeters reduce cost and simplify installation.

Success Begins with an Innovative Scalable Platform

The Rosemount 3051S Series of Instrumentation is the world's first scalable device that provides a foundation for integrated pressure, flow, and level solutions. It allows you to customize performance, functionality, diagnostics, and process connections for your application. With the latest innovations in Wireless, MultiVariable, and Advanced Diagnostics technologies, the 3051S can help improve efficiency and productivity in your facility.

PlantWeb Functionality

- MultiVariable compensation with advanced calculations including mass, energy, or actual volumetric flow
- Advanced Diagnostics provide process insight to prevent abnormal situations

Rosemount 3051S Scalable Products

Rosemount 3051S MultiVariable Transmitter

See ordering information on page 39.

- Performance up to $\pm 0.65 \%$ flow accuracy over 14:1 flow turndown
- Mass, energy, actual volumetric, and totalized flow outputs
- Differential pressure, gage or absolute pressure, and process temperature measurements
- Available 10-year stability and 12-year limited warranty

- Coplanar platform enables integrated manifold, primary element, and diaphragm seal solutions
- 316L SST, Alloy C-276, Alloy 400, Tantalum, gold-plated Alloy 400, or gold-plated 316L SST process isolators

Rosemount 3051S Coplanar Differential, Gage, or Absolute Transmitter

 See ordering information on page 43.- Performance up to $\pm 0.025 \%$ accuracy and 200:1 rangedown
- Available 10 -year stability and 12 -year limited warranty
- Coplanar platform enables integrated manifold, primary element, and diaphragm seal solutions
- Calibrated spans from $0.1 \mathrm{inH}_{2} \mathrm{O}$ to $4000 \mathrm{psi}(0,25 \mathrm{mbar}$ to 276 bar$)$
- 316L SST, Alloy C-276, Alloy 400, Tantalum, gold-plated Alloy 400, or
 gold-plated 316L SST process isolators

Rosemount 3051S In-Line Gage or Absolute Transmitter

 See ordering information on page 48.- Performance up to $\pm 0.025 \%$ accuracy and 200:1 rangedown
- Available 10-year stability and 12-year limited warranty
- Calibrated spans from 0.3 to 10000 psi (20,7 mbar to 689 bar)
- Multiple process connections available
- 316L SST and Alloy C-276 process isolators

Rosemount 3051S Liquid Level Transmitter

See ordering information on page 52.

- Performance up to $\pm 0.065 \%$ accuracy and 100:1 rangedown
- Welded fill fluid system provides best-in-class system reliability
- Flush, 2-in. (50 mm), 4-in. (100 mm), and 6-in. (150 mm) extended diaphragms
- Multiple fill fluids and wetted materials available
- Level and volume units, process alerts

Rosemount 3051SF Flowmeters

- Flowmeter platforms leverage innovative primary element designs
- Arrives leak-tested, calibrated, and ready-to-install
- Flow units, process alerts, and low flow cut-off
- \% of reading performance over 14:1 flow turndown
- Mass, energy, actual volumetric, and totalized flow outputs
- Differential pressure, gage or absolute pressure, and process temperature measurements

Rosemount 3051SFP
Integral Orifice Flowmeter See document 00813-0100-4686

Rosemount 3051SFA
Annubar Flowmeter See document 00813-0100-4809

Rosemount 3051SFC Compact Orifice Flowmeter See document 00813-0100-4810

Specifications

PERFORMANCE SPECIFICATIONS

For zero-based spans, reference conditions, silicone oil fill, glass-filled PTFE o-rings, SST materials, Coplanar flange (3051SMV, 3051S_C) or $1 / 2$ in.- 14 NPT (3051S_T) process connections, digital trim values set to equal range points.

Conformance to Specification ($\pm 3 \sigma$ (Sigma))

Technology leadership, advanced manufacturing techniques, and statistical process control ensure measurement specification conformance to $\pm 3 \sigma$ or better.

Digital Output

For Foundation ${ }^{T M}$ fieldbus and wireless devices, use calibrated range in place of span.

Reference Accuracy ${ }^{(1)}$

Models		Classic MV	Ultra for Flow
3051SMV__1: Differential Pressure, Static Pressure, \& Temperature 3051SMV__2: Differential Pressure \& Static Pressure			
DP Ranges 2-3		$\pm 0.04 \%$ of span; For spans less than 10:1, $\pm\left[0.01+0.004\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span	$\pm 0.04 \%$ of reading up to 8:1 DP turndown from URL; $\pm[0.04+0.0023$ (URL/RDG $\left.{ }^{(3)}\right)$]\% reading to 200:1 DP turndown from URL ${ }^{(4)}$
DP Range 1		$\pm 0.10 \%$ of span; For spans less than 15:1, $\pm\left[0.025+0.005\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span	N/A
AP and GP Ranges 3-4		$\pm 0.055 \%$ of span; For spans less than 10:1, $\pm\left[0.0065\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span	$\pm 0.025 \%$ of span; For spans less than 10:1, $\pm\left[0.004\left(\frac{\mathrm{URL}}{\mathrm{span}}\right)\right] \% \text { of span }$
Process Temp. RTD Interface ${ }^{(2)}$		$\pm 0.67{ }^{\circ} \mathrm{F}\left(0.37^{\circ} \mathrm{C}\right)$	$\pm 0.67{ }^{\circ} \mathrm{F}\left(0.37^{\circ} \mathrm{C}\right)$
Models	Ultra	Classic	Ultra for Flow
3051SMV__3: Differential Pressure \& Temperature 3051SMV__4: Differential Pressure			
Ranges 2-4	$\pm 0.025 \%$ of span; For spans less than 10:1, $\pm\left[0.005+0.0035\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span	$\pm 0.055 \%$ of span; For spans less than 10:1, $\pm\left[0.015+0.005\left(\frac{\mathrm{URL}}{\text { span }}\right)\right] \% \text { of span }$	$\pm 0.04 \%$ of reading up to 8:1 DP turndown from URL; $\pm[0.04+0.0023$ (URL/RDG $\left.{ }^{(3)}\right)$]\% reading to 200:1 DP turndown from URL ${ }^{(4)}$
Range 5	$\pm 0.05 \%$ of span; For spans less than 10:1, $\pm\left[0.005+0.0045\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span	$\pm 0.065 \%$ of span; For spans less than 10:1, $\pm\left[0.015+0.005\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span	N/A
Range 1	$\pm 0.09 \%$ of span; For spans less than 15:1, $\pm\left[0.015+0.005\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span	$\pm 0.10 \%$ of span; For spans less than 15:1, $\pm\left[0.025+0.005\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span	N/A
Range 0	$\pm 0.09 \%$ of span; For spans less than $2: 1, \pm 0.045 \%$ of URL	$\pm 0.10 \%$ of span; For spans less than $2: 1, \pm 0.05 \%$ of URL	N/A
Process Temp. RTD Interface ${ }^{(2)}$	$\pm 0.67^{\circ} \mathrm{F}\left(0.37^{\circ} \mathrm{C}\right)$	$\pm 0.67^{\circ} \mathrm{F}\left(0.37^{\circ} \mathrm{C}\right)$	$\pm 0.67^{\circ} \mathrm{F}\left(0.37^{\circ} \mathrm{C}\right)$

Reference Accuracy (continued)

Models
 Ultra

Classic
Ultra for Flow
3051S_CD: Coplanar Differential Pressure
3051S_CG: Coplanar Gage Pressure

Ranges 2-4 $\pm 0.025 \%$ of span;
For spans less than 10:1,
$\pm\left[0.005+0.0035\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span
Range $5 \pm 0.05 \%$ of span;
For spans less than 10:1,
$\pm\left[0.005+0.0045\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span
Range $1 \pm 0.09 \%$ of span;
For spans less than 15:1,
$\pm\left[0.015+0.005\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span
Range $0 \pm 0.09 \%$ of span;
For spans less than $2: 1, \pm 0.045 \%$ of URL
$\pm 0.055 \%$ of span;
For spans less than 10:1,
$\pm\left[0.015+0.005\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span
$\pm 0.065 \%$ of span;
For spans less than 10:1,
$\pm\left[0.015+0.005\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span
$\pm 0.10 \%$ of span;
For spans less than 15:1,
$\pm\left[0.025+0.005\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span
$\pm 0.10 \%$ of span;
For spans less than 2:1, $\pm 0.05 \%$ of URL
$\pm 0.04 \%$ of reading up to 8:1 DP turndown from URL;
$\pm[0.04+0.0023$
(URL/RDG $\left.\left.{ }^{(3)}\right)\right] \%$ reading to 200:1 DP turndown from URL ${ }^{(4)}$
$\pm 0.055 \%$ of span;
For spans less than 10:1,

$$
\pm\left[0.0065\left(\frac{\mathrm{URL}}{\mathrm{span}}\right)\right] \% \text { of span }
$$

$\pm 0.075 \%$ of span;
For spans less than 5:1,
$\pm\left[0.025+0.01\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span

3051S_T: In-Line Gage Pressure or In-Line Absolute Pressure

Ranges 1-4 $\pm 0.025 \%$ of span;
For spans less than 10:1,
$\pm\left[0.004\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span
Range $5 \pm 0.04 \%$ of span;
For spans less than 10:1,
$\pm\left[0.004\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span
$\pm 0.055 \%$ of span;
For spans less than 10:1, N/A
$\pm\left[0.0065\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span
$\pm 0.065 \%$ of span; N/A
For spans less than 10:1,

$$
\pm\left[0.0065\left(\frac{\mathrm{URL}}{\mathrm{span}}\right)\right] \% \text { of span }
$$

3051S_L: Coplanar Liquid Level
$\pm 0.065 \%$ of span;
For spans less than 10:1,
$\pm\left[0.015+0.005\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span
$\pm 0.065 \%$ of span;
For spans less than 10:1,
$\pm\left[0.015+0.005\left(\frac{\text { URL }}{\text { span }}\right)\right] \%$ of span

N/A

[^0]
Total Performance ${ }^{(1)}$

| Models | | Ultra | Classic and Classic MV | Ultra for Flow ${ }^{(2)}$ |
| :--- | ---: | :--- | :--- | :--- | :--- |
| 3051SMV | DP Ranges 2-3 | $\pm 0.1 \%$ of span; for $\pm 50^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{C}\right)$ | $\pm 0.15 \%$ of span; for $\pm 50^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{C}\right)$ | $\pm 0.1 \%$ of reading; for $\pm 50^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{C}\right)$ |
| 3051S_CD | Ranges 2-3 | temperature changes; $0-100 \%$ | temperature changes; $0-100 \%$ | temperature changes; $0-100 \%$ |
| 3051S_CG | Ranges 2-5 | relative humidity, up to 740 psi | relative humidity, up to 740 psi | relative humidity, up to 740 psi |
| 3051S_CA | Ranges 2-4 | (51 bar) line pressure (DP only), | (51 bar) line pressure (DP only), | (51 bar) line pressure, over 8:1 DP |
| 3051S_T | Ranges 2-4 | from 1:1 to 5:1 rangedown | from 1:1 to 5:1 rangedown | turndown from URL |

(1) Total performance is based on combined errors of reference accuracy, ambient temperature effect, and line pressure effect. For 3051SMV, specification applies to differential pressure measurement.
(2) Ultra for Flow is only available for 3051S_CD Ranges 2-3 and 3051SMV DP Ranges 2-3.

MultiVariable Flow Performance ${ }^{(1)}$

Mass, Energy, Actual Volumetric, and Totalized Flow Reference Accuracy ${ }^{(2)}$

Models		Ultra for Flow	Classic MV
3051SMV	DP Ranges 2-3	$\pm 0.65 \%$ of Flow Rate over a 14:1 flow range (200:1 DP range)	$\pm 0.70 \%$ of Flow Rate over 8:1 flow range (64:1 DP range)
	DP Range 1	N/A	$\pm 0.90 \%$ of Flow Rate over 8:1 flow range (64:1 DP range)

(1) Applies to the 3051SMV_M MultiVariable Type only. Flow performance specifications assume device is configured for full compensation of static pressure, process temperature, density, viscosity, gas expansion, discharge coefficient, and thermal correction variances over a specified operating range.
(2) Uncalibrated differential producer (0.2 < beta < 0.6 Orifice) installed per ASME MFC 3 M or ISO 5167-1. Uncertainties for discharge coefficient, producer bore, tube diameter, and gas expansion factor as defined in ASME MFC 3M or ISO 5167-1. Reference accuracy does not include RTD sensor accuracy.

Long Term Stability

Rosemount 3051S Series

Warranty ${ }^{(1)}$

Models
3051S Scalable Products
Ultra and Ultra for Flow
(1) Warranty details can be found in Emerson Process Management Terms \& Conditions of Sale, Document 63445, Rev G (10/06).
(2) Rosemount Ultra and Ultra for Flow transmitters have a limited warranty of twelve (12) years from date of shipment. All other provisions of Emerson
Process Management standard limited warranty remain the same.
(3) Goods are warranted for twelve (12) months from the date of initial installation or eighteen (18) months from the date of shipment by seller, whichever
period expires first.

Dynamic Performance ${ }^{(1)}$

Ambient Temperature Effect

Models	Ultra per $50^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{C}\right)$	Classic or Classic MV per $50^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{C}\right)$	Ultra for Flow ${ }^{(1)}$ -40 to $185{ }^{\circ} \mathrm{F}\left(-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
3051SMV__1: Differential Pressure, Static Pressure, \& Temperature 3051SMV__2: Differential Pressure \& Static Pressure			
DP Ranges 2-3	N/A	$\begin{aligned} & \pm(0.0125 \% \text { URL }+0.0625 \% \text { span }) \\ & \text { from 1:1 to 5:1; } \\ & \pm(0.025 \% \text { URL }+0.125 \% \text { span }) \text { for }>5: 1 \end{aligned}$	$\pm 0.13 \%$ reading up to 8:1 DP turndown from URL; $\pm\left[0.13+0.0187\left(\text { URL/RDG }{ }^{(3)}\right)\right] \% \text { reading }$ to 100:1 DP turndown from URL
DP Range 1	N/A	\pm (0.1\% URL + 0.25\% Span) from 1:1 to 50:1	N/A
AP and GP	N/A	$\begin{aligned} & \pm(0.0125 \% \text { URL }+0.0625 \% \text { Span }) \\ & \text { from 1:1 to 10:1; } \\ & \pm(0.025 \% \text { URL }+0.125 \% \text { Span }) \text { for }>10: 1 \end{aligned}$	$\begin{aligned} & \pm(0.009 \% \text { URL }+0.025 \% \text { Span }) \\ & \text { from 1:1 to 10:1; } \\ & \pm \text { (0.018\% URL + 0.08\% Span) for }>10: 1 \end{aligned}$
3051SMV__ 3: Differential Pressure \& Temperature 3051SMV__ 4: Differential Pressure			
Range 2 - $5^{(2)}$	$\begin{aligned} & \pm(0.009 \% \text { URL }+0.025 \% \text { span }) \\ & \text { from } 1: 1 \text { to } 10: 1 ; \\ & \pm(0.018 \% \text { URL }+0.08 \% \text { span }) \\ & \text { from }>10: 1 \text { to } 200: 1 \end{aligned}$	$\begin{aligned} & \pm(0.0125 \% \text { URL }+0.0625 \% \text { span }) \\ & \text { from 1:1 to } 5: 1 ; \\ & \pm(0.025 \% \text { URL }+0.125 \% \text { span }) \\ & \text { from >5:1 to } 100: 1 \end{aligned}$	$\pm 0.13 \%$ reading up to 8:1 DP turndown from URL; $\pm\left[0.13+0.0187\right.$ (URL/RDG $\left.\left.^{(3)}\right)\right]$ \% reading to 100:1 DP turndown from URL
Range 0	$\pm \text { (0.25\% URL + 0.05\% span) }$ from 1:1 to $30: 1$	$\pm \text { (0.25\% URL + 0.05\% span) }$ from 1:1 to $30: 1$	N/A
Range 1	$\begin{aligned} & \pm(0.1 \% \text { URL }+0.25 \% \text { span }) \\ & \text { from 1:1 to } 50: 1 \end{aligned}$	$\pm \text { (0.1\% URL + 0.25\% span) }$ $\text { from } 1: 1 \text { to } 50: 1$	N/A
Process Temp. RTD Interface ${ }^{(4)}$	N/A	$\pm 0.39{ }^{\circ} \mathrm{F}\left(0,216^{\circ} \mathrm{C}\right)$ per $50{ }^{\circ} \mathrm{F}\left(28{ }^{\circ} \mathrm{C}\right)$	$\pm 0.39{ }^{\circ} \mathrm{F}\left(0,216{ }^{\circ} \mathrm{C}\right) \operatorname{per} 50{ }^{\circ} \mathrm{F}\left(28{ }^{\circ} \mathrm{C}\right)$
3051S_CD: Coplanar Differential Pressure 3051S_CG: Coplanar Gage Pressure			
Range 2 - $5^{(2)}$	$\begin{aligned} & \pm(0.009 \% \text { URL + } 0.025 \% \text { span }) \\ & \text { from 1:1 to 10:1; } \\ & \pm(0.018 \% \text { URL }+0.08 \% \text { span }) \\ & \text { from }>10: 1 \text { to } 200: 1 \end{aligned}$	$\begin{aligned} & \pm(0.0125 \% \text { URL + 0.0625\% span) } \\ & \text { from } 1: 1 \text { to 5:1; } \\ & \pm(0.025 \% \text { URL }+0.125 \% \text { span }) \\ & \text { from }>5: 1 \text { to } 100: 1 \end{aligned}$	$\pm 0.13 \%$ reading up to 8:1 DP turndown from URL; $\pm\left[0.13+0.0187\right.$ (URL/RDG $\left.\left.^{(3)}\right)\right] \%$ reading to 100:1 DP turndown from URL
Range 0	$\pm \text { (0.25\% URL }+0.05 \% \text { span })$ from 1:1 to $30: 1$	$\pm \text { (0.25\% URL + 0.05\% span) }$ from 1:1 to $30: 1$	N/A
Range 1	$\begin{aligned} & \pm(0.1 \% \text { URL }+0.25 \% \text { span }) \\ & \text { from 1:1 to } 50: 1 \end{aligned}$	$\pm \text { (0.1\% URL }+0.25 \% \text { span })$ $\text { from 1:1 to } 50: 1$	N/A
3051S_CA: Coplanar Absolute Pressure			
Ranges 2-4	$\begin{aligned} & \pm(0.0125 \% \text { URL + } 0.0625 \% \text { span }) \\ & \text { from 1:1 to } 5: 1 ; \\ & \pm(0.025 \% \text { URL }+0.125 \% \text { span }) \\ & \text { from }>5: 1 \text { to } 200: 1 \end{aligned}$	```\pm (0.0125% URL + 0.0625% span) from 1:1 to 5:1; \pm (0.025% URL + 0.125% span) from >5:1 to 100:1```	N/A
Range 0	$\pm \text { (} 0.1 \% \text { URL }+0.25 \% \text { span })$ from 1:1 to $30: 1$	$\pm(0.1 \% \text { URL }+0.25 \% \text { span })$ from 1:1 to $30: 1$	N/A
Range 1	```\pm(0.0125% URL+0.0625% span) from 1:1 to 5:1; \pm (0.025% URL + 0.125% span) from >5:1 to 100:1```	$\begin{aligned} & \pm(0.0125 \% \text { URL }+0.0625 \% \text { span }) \\ & \text { from } 1: 1 \text { to } 5: 1 ; \\ & \pm(0.025 \% \text { URL }+0.125 \% \text { span }) \\ & \text { from >5:1 to } 100: 1 \end{aligned}$	N/A
3051S_T: In-Line Gage Pressure or In-Line Absolute Pressure			
Ranges 2-4	$\begin{aligned} & \pm(0.009 \% \text { URL }+0.025 \% \text { span }) \\ & \text { from 1:1 to 10:1; } \\ & \pm(0.018 \% \text { URL }+0.08 \% \text { span }) \\ & \text { from }>10: 1 \text { to } 100: 1 \end{aligned}$	```\pm (0.0125% URL + 0.0625% span) from 1:1 to 5:1; \pm (0.025% URL + 0.125% span) from >5:1 to 100:1```	N/A
Range 5	$\pm \text { (0.05\% URL + 0.075\% span) }$ $\text { from } 1: 1 \text { to } 10: 1$	$\pm \text { (0.05\% URL + 0.075\% span) }$ $\text { from } 1: 1 \text { to } 5: 1$	N/A
Range 1	$\begin{aligned} & \pm(0.0125 \% \text { URL }+0.0625 \% \text { span }) \\ & \text { from 1:1 to } 5: 1 ; \\ & \pm(0.025 \% \text { URL }+0.125 \% \text { span }) \\ & \text { from }>5: 1 \text { to } 100: 1 \end{aligned}$	```\pm (0.0125% URL + 0.0625% span) from 1:1 to 5:1; \pm (0.025% URL + 0.125% span) from >5:1 to 100:1```	N/A
3051S_L: Coplanar Liquid Level			
	See Instrument Toolkit.	See Instrument Toolkit.	
(1) Ultra for Flow is only available for 3051S_CD Ranges 2-3 and 3051SMV DP Ranges 2-3.			
(2) Use Classic specification for 3051SMV DP Range 5 Ultra and 3051S_CD Range 5 Ultra.			
(3) RDG refers to transmitter reading.			
(4) Specifications for process temperature are for the transmitter portion only. The transmitter is compatible with any Pt 100 (100 ohm platinum) RTD. Examples of compatible RTDs include Rosemount Series 68 and 78 RTD Temperature Sensors.			

Line Pressure Effect ${ }^{(1)}$

Models	Ultra and Ultra for Flow	Classic and Classic MV
3051SMV: Differential Pressure Measurement Only 3051S_CD: Coplanar Differential Pressure		
	Zero Error ${ }^{(2)}$	Zero Error ${ }^{(2)}$
Range 2-3	$\pm 0.025 \%$ URL per 1000 psi (69 bar)	$\pm 0.05 \%$ URL per 1000 psi (69 bar)
Range 0	$\pm 0.125 \%$ URL per 100 psi (6,89 bar)	$\pm 0.125 \%$ URL per 100 psi (6,89 bar)
Range 1	$\pm 0.25 \%$ URL per 1000 psi (69 bar)	$\pm 0.25 \%$ URL per 1000 psi (69 bar)
	Span Error ${ }^{(3)}$	Span Error ${ }^{(3)}$
Range 2-3	$\pm 0.1 \%$ of reading per $1000 \mathrm{psi}(69 \mathrm{bar})$	$\pm 0.1 \%$ of reading per 1000 psi (69 bar)
Range 0	$\pm 0.15 \%$ of reading per $100 \mathrm{psi}(6,89 \mathrm{bar})$	$\pm 0.15 \%$ of reading per $100 \mathrm{psi}(6,89 \mathrm{bar})$
Range 1	$\pm 0.4 \%$ of reading per $1000 \mathrm{psi}(69 \mathrm{bar})$	$\pm 0.4 \%$ of reading per 1000 psi (69 bar)
(1) For zero error specifications for line pressures above 2000 psi (137,9 bar) or line pressure effect specifications for DP Ranges 4-5, see the 3051SMV Reference Manual (document number 00809-0100-4803) or 3051S Reference Manual (document number 00809-0100-4801).		
(2) Zero error can be zeroed.		
(3) Specifications for option	code PO are 2 times those shown above.	

Mounting Position Effects

Models		Ultra, Ultra for Flow, Classic and Classic MV
3051SMV_ 1, 2	DP:	Zero shifts up to $\pm 1.25 \mathrm{inH}_{2} \mathrm{O}$ ($3,11 \mathrm{mbar}$), which can be zeroed; no span effect
	AP/GP:	Zero shifts to $\pm 2.5 \mathrm{inH}_{2} \mathrm{O}$ ($6,22 \mathrm{mbar}$), which can be zeroed; no span effect
3051SMV__ 3, 4		Zero shifts up to $\pm 1.25 \mathrm{inH}_{2} \mathrm{O}$ ($3,11 \mathrm{mbar}$), which can be zeroed; no span effect
3051S_CD, CG		Zero shifts up to $\pm 1.25 \mathrm{inH}_{2} \mathrm{O}$ ($3,11 \mathrm{mbar}$), which can be zeroed; no span effect
3051S_CA		Zero shifts to $\pm 2.5 \mathrm{inH}_{2} \mathrm{O}$ ($6,22 \mathrm{mbar}$), which can be zeroed; no span effect
3051S_T		Zero shifts to $\pm 2.5 \mathrm{inH}_{2} \mathrm{O}$ ($6,22 \mathrm{mbar}$), which can be zeroed; no span effect
3051S_L		With liquid level diaphragm in vertical plane, zero shift of up to $\pm 1 \mathrm{inH}_{2} \mathrm{O}(2,49 \mathrm{mbar})$; with diaphragm in horizontal plane, zero shift of up to $\pm 5 \mathrm{inH}_{2} \mathrm{O}$ ($12,45 \mathrm{mbar}$) plus extension length on extended units; all zero shifts can be zeroed; no span effect

Vibration Effect

Less than $\pm 0.1 \%$ of URL when tested per the requirements of IEC60770-1 field or pipeline with high vibration level ($10-60 \mathrm{~Hz}$ 0.21 mm displacement peak amplitude / $60-2000 \mathrm{~Hz} \mathrm{3g}$).

For Housing Style codes $1 \mathrm{~J}, 1 \mathrm{~K}, 1 \mathrm{~L}, 2 \mathrm{~J}$, and 2 M : Less than $\pm 0.1 \%$ of URL when tested per the requirements of IEC60770-1 field with general application or pipeline with low vibration level ($10-60 \mathrm{~Hz} 0.15 \mathrm{~mm}$ displacement peak amplitude / $60-500 \mathrm{~Hz} \mathrm{2g}$).

Power Supply Effect

Less than $\pm 0.005 \%$ of calibrated span per volt change in voltage at the transmitter terminals

Electromagnetic Compatibility (EMC)

Meets all relevant requirements of EN 61326 and NAMUR NE-21. ${ }^{(1)(2)}$
(1) NAMUR NE-21 does not apply to wireless output code X.
(2) 3051SMV requires shielded cable for both temperature and loop wiring.

Transient Protection (Option T1)

Meets IEEE C62.41.2-2002, Location Category B
6 kV crest ($0.5 \mu \mathrm{~s}-100 \mathrm{kHz}$)
3 kA crest (8×20 microseconds)
6 kV crest (1.2×50 microseconds)
Meets IEEE C37.90.1-2002 Surge Withstand Capability
SWC 2.5 kV crest, 1.0 MHz wave form

FUNCTIONAL SPECIFICATIONS

Range and Sensor Limits

$$	3051SMV Differential Pressure Range and Sensor Limits			
	Minimum Span		Range Limits	
	Ultra and Ultra for Flow	Classic and Classic MV	Upper (URL)	Lower (LRL) ${ }^{(1)}$
0	$0.1 \mathrm{inH}_{2} \mathrm{O}(0,25 \mathrm{mbar})$	$0.1 \mathrm{inH}_{2} \mathrm{O}(0,25 \mathrm{mbar})$	$3.0 \mathrm{inH}_{2} \mathrm{O}(7,5 \mathrm{mbar})$	-3.0 $\mathrm{inH}_{2} \mathrm{O}(-7,5 \mathrm{mbar})$
1	$0.5 \mathrm{inH}_{2} \mathrm{O}(1,24 \mathrm{mbar})$	$0.5 \mathrm{inH}_{2} \mathrm{O}(1,24 \mathrm{mbar})$	$25.0 \mathrm{inH}_{2} \mathrm{O}(62,3 \mathrm{mbar})$	-25.0 $\mathrm{inH}_{2} \mathrm{O}(-62,3 \mathrm{mbar})$
2	$1.3 \mathrm{inH}_{2} \mathrm{O}(3,11 \mathrm{mbar})$	$2.5 \mathrm{inH}_{2} \mathrm{O}(6,23 \mathrm{mbar})$	$250.0 \mathrm{inH}_{2} \mathrm{O}$ (0,62 bar)	-250.0 $\mathrm{inH}_{2} \mathrm{O}(-0,62 \mathrm{bar})$
3	$5.0 \mathrm{inH}_{2} \mathrm{O}$ (12,4 mbar)	$10.0 \mathrm{inH}_{2} \mathrm{O}(24,9 \mathrm{mbar})$	$1000.0 \mathrm{inH}_{2} \mathrm{O}$ (2,49 bar)	-1000.0 $\mathrm{inH}_{2} \mathrm{O}(-2,49 \mathrm{bar})$
4	1.5 psi ($103,4 \mathrm{mbar}$)	3.0 psi (206,8 mbar)	300.0 psi ($20,7 \mathrm{bar}$)	-300.0 psi (-20,7 bar)
5	10.0 psi ($689,5 \mathrm{mbar}$)	20.0 psi (1,38 bar)	2000.0 psi ($137,9 \mathrm{bar})$	- 2000.0 psi (-137,9 bar)

(1) Lower (LRL) is $0 \mathrm{inH}_{2} \mathrm{O}$ (0 mbar) for Ultra for Flow.

$$	3051SMV Static Pressure Range and Sensor Limits				
	Minimum Span		Range Limits		
	Ultra for Flow	Classic MV	Upper (URL)	Lower (LRL) (Absolute)	Lower (LRL) (Gage) ${ }^{(1)(2)}$
3	4.0 psi (276 mbar)	8.0 psi (552 mbar)	800 psi (55,16 bar)	0.5 psia ($34,5 \mathrm{mbar}$)	-14.2 psig (-0,98 bar)
4	$18.13 \mathrm{psi}(1,25 \mathrm{bar})$	36.26 psi (2,50 bar)	3626 psi (250.0 bar) ${ }^{(3)}$	0.5 psia ($34,5 \mathrm{mbar}$)	-14.2 psig (-0,98 bar)

(1) Assumes atmospheric pressure of 14.7 psig (1 bar).
(2) Inert Fill: Minimum pressure $=1.5$ psia ($0,10 \mathrm{bar}$) or $-13.2 \mathrm{psig}(-0,91 \mathrm{bar})$.
(3) For SP Range 4 and DP Range 1, the URL is 2000 psi (137,9 bar).

Process Temperature RTD Interface Range Limits ${ }^{(1)}$		
Minimum Span	Upper (URL)	Lower (LRL)
$50^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{C}\right)$	$1562^{\circ} \mathrm{F}\left(850^{\circ} \mathrm{C}\right)$	$-328^{\circ} \mathrm{F}\left(-200^{\circ} \mathrm{C}\right)$

(1) Designed to accommodate a Pt 100 RTD sensor. Examples of compatible RTDs include Rosemount Series 68 and 78 RTD Temperature Sensors.

	3051S_CD, CG, LD, LG Range and Sensor Limits					
	Minimum Span		Range Limits			
	Ultra and Ultra for Fow	Classic	Upper (URL)	Lower (LRL)		
				3051S_CD ${ }^{(1)}$	3051S_CG, LG ${ }^{(2)(3)}$	3051S_LD ${ }^{(2)}$
0	$\begin{gathered} 0.1 \mathrm{inH}_{2} \mathrm{O} \\ (0,25 \mathrm{mbar}) \end{gathered}$	$\begin{gathered} 0.1 \mathrm{inH}_{2} \mathrm{O} \\ (0,25 \mathrm{mbar}) \end{gathered}$	$\begin{aligned} & 3.0 \mathrm{inH}_{2} \mathrm{O} \\ & (7,5 \mathrm{mbar}) \end{aligned}$	$\begin{aligned} & -3.0 \mathrm{inH}_{2} \mathrm{O} \\ & (-7,5 \mathrm{mbar}) \end{aligned}$	NA	NA
1	$\begin{gathered} 0.5 \mathrm{inH}_{2} \mathrm{O} \\ (1,24 \mathrm{mbar}) \end{gathered}$	$\begin{gathered} 0.5 \mathrm{inH}_{2} \mathrm{O} \\ (1,24 \mathrm{mbar}) \end{gathered}$	$\begin{aligned} & 25.0 \mathrm{inH}_{2} \mathrm{O} \\ & (62,3 \mathrm{mbar}) \end{aligned}$	$\begin{aligned} & -25.0 \mathrm{inH}_{2} \mathrm{O} \\ & (-62,3 \mathrm{mbar}) \end{aligned}$	$\begin{aligned} & -25.0 \mathrm{inH}_{2} \mathrm{O} \\ & (-62,3 \mathrm{mbar}) \end{aligned}$	$\begin{aligned} & -25.0 \mathrm{inH}_{2} \mathrm{O} \\ & (-62,3 \mathrm{mbar}) \end{aligned}$
2	$\begin{gathered} 1.3 \mathrm{inH}_{2} \mathrm{O} \\ (3,11 \mathrm{mbar}) \end{gathered}$	$\begin{gathered} 2.5 \mathrm{inH}_{2} \mathrm{O} \\ (6,23 \mathrm{mbar}) \end{gathered}$	$\begin{gathered} 250.0 \mathrm{inH}_{2} \mathrm{O} \\ (0,62 \mathrm{bar}) \end{gathered}$	$\begin{gathered} -250.0 \mathrm{inH}_{2} \mathrm{O} \\ (-0,62 \mathrm{bar}) \end{gathered}$	$\begin{gathered} -250.0 \mathrm{inH}_{2} \mathrm{O} \\ (-0,62 \mathrm{bar}) \end{gathered}$	$\begin{gathered} -250.0 \mathrm{inH}_{2} \mathrm{O} \\ (-0,62 \mathrm{bar}) \end{gathered}$
3	$\begin{gathered} 5.0 \mathrm{inH}_{2} \mathrm{O} \\ \text { (12,4 mbar) } \end{gathered}$	$\begin{aligned} & 10.0 \mathrm{inH}_{2} \mathrm{O} \\ & (24,9 \mathrm{mbar}) \end{aligned}$	$\begin{gathered} 1000.0 \mathrm{inH}_{2} \mathrm{O} \\ (2,49 \mathrm{bar}) \end{gathered}$	$\begin{gathered} -1000.0 \mathrm{inH}_{2} \mathrm{O} \\ (-2,49 \mathrm{bar}) \end{gathered}$	$\begin{gathered} -393.0 \mathrm{inH}_{2} \mathrm{O} \\ (-979 \mathrm{mbar}) \end{gathered}$	$\begin{gathered} -1000.0 \mathrm{inH}_{2} \mathrm{O} \\ (-2,49 \mathrm{bar}) \end{gathered}$
4	$\begin{gathered} 1.5 \mathrm{psi} \\ (103,4 \mathrm{mbar}) \end{gathered}$	$\begin{gathered} 3.0 \mathrm{psi} \\ (206,8 \mathrm{mbar}) \end{gathered}$	$\begin{aligned} & 300.0 \mathrm{psi} \\ & \text { (20,7 bar) } \end{aligned}$	$\begin{aligned} & -300.0 \mathrm{psi} \\ & (-20,7 \mathrm{bar}) \end{aligned}$	$\begin{gathered} -14.2 \mathrm{psig} \\ (-979 \mathrm{mbar}) \end{gathered}$	$\begin{aligned} & -300.0 \mathrm{psi} \\ & (-20,7 \mathrm{bar}) \end{aligned}$
5	$\begin{gathered} 10.0 \mathrm{psi} \\ (689,5 \mathrm{mbar}) \end{gathered}$	$\begin{gathered} 20.0 \mathrm{psi} \\ (1,38 \mathrm{bar}) \end{gathered}$	$\begin{aligned} & 2000.0 \mathrm{psi} \\ & (137,9 \mathrm{bar}) \end{aligned}$	$\begin{aligned} & -2000.0 \mathrm{psi} \\ & (-137,9 \mathrm{bar}) \end{aligned}$	$\begin{gathered} -14.2 \mathrm{psig} \\ (-979 \mathrm{mbar}) \end{gathered}$	$\begin{aligned} & -2000.0 \mathrm{psi} \\ & (-137,9 \mathrm{bar}) \end{aligned}$

[^1]| | 3051S_T Range and Sensor Limits | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Minimum Span | | Range Limits | | |
| | Ultra | Classic | Upper (URL) | Lower (LRL) (Abs.) | Lower ${ }^{(1)}$ (LRL) (Gage) |
| 1 | 0.3 psi (20,7 mbar) | 0.3 psi (20,7 mbar) | 30 psi (2,07 bar) | 0 psia (0 bar) | -14.7 psig (-1,01 bar) |
| 2 | 0.75 psi ($51,7 \mathrm{mbar}$) | 1.5 psi (0,103 bar) | 150 psi (10,34 bar) | 0 psia (0 bar) | -14.7 psig (-1,01 bar) |
| 3 | 4 psi (275,8 mbar) | $8 \mathrm{psi}(0,55$ bar) | 800 psi (55,16 bar) | 0 psia (0 bar) | -14.7 psig (-1,01 bar) |
| 4 | 20 psi (1,38 bar) | 40 psi ($2,76 \mathrm{bar}$) | 4000 psi (275,8 bar) | 0 psia (0 bar) | -14.7 psig (-1,01 bar) |
| 5 | 1000 psi (68,9 bar) | 2000 psi (137,9 bar) | 10000 psi (689,5 bar) | 0 psia (0 bar) | -14.7 psig (-1,01 bar) |

(1) Assumes atmospheric pressure of 14.7 psig (1 bar).

	3051S_CA, LA ${ }^{(1)}$ Range and Sensor Limits			
	Minimum Span		Range Limits	
	Ultra	Classic	Upper (URL)	Lower (LRL)
$0^{(2)}$	0.167 psia (11,5 mbar)	0.167 psia ($11,5 \mathrm{mbar}$)	5 psia (0,34 bar)	0 psia (0 bar)
1	0.3 psia ($20,7 \mathrm{mbar}$)	0.3 psia (20,7 mbar)	30 psia (2,07 bar)	0 psia (0 bar)
2	0.75 psia ($51,7 \mathrm{mbar}$)	1.5 psia (0,103 bar)	150 psia (10,34 bar)	0 psia (0 bar)
3	4 psia ($275,8 \mathrm{mbar}$)	8 psia (0,55 bar)	800 psia (55,16 bar)	0 psia (0 bar)
4	20 psia (1,38 bar)	40 psia (2,76 bar)	4000 psia (275,8 bar)	0 psia (0 bar)

(1) When specifying a 3051S_L Ultra, use Classic minimum span.
(2) Range 0 is not available for 3051S_LA.

Service

3051S and 3051SMV_P (Direct Process Variable Output):
Liquid, gas, and vapor applications
3051SMV_M (Mass and Energy Flow Output):
Some fluid types are only supported by certain measurement types
Fluid Compatibility with Pressure and Temperature Compensation

- Available
- Not available

Ordering Code	Measurement Type	Fluid Types			
		Liquids	Saturated Steam	Superheated Steam	Gas and Natural Gas
1	DP / P/ T (Full Compensation)	-	-	-	-
2	DP / P	-	-	-	-
3	DP / T	-	-	-	-
4	DP only	-	-	-	-

4-20 mA/HART

Zero and Span Adjustment

Zero and span values can be set anywhere within the range. Span must be greater than or equal to the minimum span.

Output

Two-wire 4-20 mA is user-selectable for linear or square root output. Digital process variable superimposed on 4-20 mA signal, available to any host that conforms to the HART protocol.

Power Supply

External power supply required.
3051SMV transmitter: 12 to 42.4 Vdc with no load 3051S transmitter ($4-20 \mathrm{~mA}$): 10.5 to 42.4 Vdc with no load 3051S HART Diagnostics transmitter: 12 to 42.4 Vdc with no load

Load Limitations

Maximum loop resistance is determined by the voltage level of the external power supply, as described by:

3051SMV Transmitter
3051S HART Diagnostics Transmitter (option code DA1)
Maximum Loop Resistance $=43.5$ * (Power Supply Voltage - 12.0)

The HART communicator requires a minimum loop resistance of 250Ω for communication.

3051S Transmitter
Maximum Loop Resistance $=43.5^{*}$ ((Power Supply Voltage-10.5)

The HART communicator requires a minimum loop resistance of 250Ω for communication.

ASP ${ }^{\text {TM }}$ Diagnostics Suite for HART

(Option Code DA1)

The 3051S provides Abnormal Situation Prevention indication for a breakthrough in diagnostic capability. The 3051S ASP Diagnostics Suite for HART includes Statistical Process Monitoring (SPM), variable logging with time stamp and advanced process alerts. The enhanced EDDL graphic display provides an intuitive and user-friendly interface to better visualize these diagnostics.
The integral SPM technology calculates the mean and standard deviation of the process variable 22 times per second and makes them available to the user. The 3051S uses these values and highly flexible configuration options for customization to detect many user-defined or application specific abnormal situations (e.g. detecting plugged impulse lines and fluid composition change). Variable logging with time stamp and advanced process alerts capture valuable process and sensor data to enable quick troubleshooting of application and installation issues.

Rosemount 3051S Series

Foundation fieldbus

Power Supply

External power supply required; transmitters operate on 9.0 to 32.0 Vdc transmitter terminal voltage.

Current Draw

17.5 mA for all configurations (including LCD display option)

Foundation fieldbus Parameters

Schedule Entries	14 (max.)
Links	30 (max.)
Virtual Communications Relationships (VCR)	20 (max.)

Standard Function Blocks

Resource Block

- Contains hardware, electronics, and diagnostic information.

Transducer Block

- Contains actual sensor measurement data including the sensor diagnostics and the ability to trim the pressure sensor or recall factory defaults.

LCD Block

- Configures the local display.

2 Analog Input Blocks

- Processes the measurements for input into other function blocks. The output value is in engineering or custom units and contains a status indicating measurement quality.
PID Block with Auto-tune
- Contains all logic to perform PID control in the field including cascade and feedforward. Auto-tune capability allows for superior tuning for optimized control performance.

Backup Link Active Scheduler (LAS)

The transmitter can function as a Link Active Scheduler if the current link master device fails or is removed from the segment.

Software Upgrade in the Field

Software for the 3051S with Foundation fieldbus is easy to upgrade in the field using the Foundation fieldbus Common Device Software Download procedure.

PlantWeb Alerts

Enable the full power of the PlantWeb digital architecture by diagnosing instrumentation issues, communicating advisory, maintenance, and failure details, and recommending a solution.

Advanced Control Function Block Suite

(Option Code A01)
Input Selector Block

- Selects between inputs and generates an output using specific selection strategies such as minimum, maximum, midpoint, average, or first "good."

Arithmetic Block

- Provides pre-defined application-based equations including flow with partial density compensation, electronic remote seals, hydrostatic tank gauging, ratio control and others.

Signal Characterizer Block

- Characterizes or approximates any function that defines an input/output relationship by configuring up to twenty X, Y coordinates. The block interpolates an output value for a given input value using the curve defined by the configured coordinates.
Integrator Bock
- Compares the integrated or accumulated value from one or two variables to pre-trip and trip limits and generates discrete output signals when the limits are reached. This block is useful for calculating total flow, total mass, or volume over time.
Output Splitter Block
- Splits the output of one PID or other control block so that the PID will control two valves or other actuators.

Control Selector Block

- Selects one of up to three inputs (highest, middle, or lowest) that are normally connected to the outputs of PID or other control function blocks.

Block	Execution Time
Resource	-
Transducer	-
LCD Block	20 milliseconds
Analog Input 1, 2	35 milliseconds
PID with Auto-tune	20 milliseconds
Input Selector	20 milliseconds
Arithmetic	20 milliseconds
Signal Characterizer	20 milliseconds
Integrator	20 milliseconds
Output Splitter	20 milliseconds
Control Selector	

Fully Compensated Mass Flow Block (Option Code H01)
Calculates fully compensated mass flow based on differential pressure with external process pressure and temperature measurements over the fieldbus segment. Configuration for the mass flow calculation is easily accomplished using the Rosemount Engineering Assistant.

ASP Diagnostics Suite for Foundation fieldbus (Option Code D01)

The 3051S ASP Diagnostics Suite for Foundation fieldbus provides Abnormal Situation Prevention indication and enhanced EDDL graphic displays for easy visual analysis. The integral Statistical Process Monitoring (SPM) technology calculates the mean and standard deviation of the process variable 22 times per second and makes them available to the user. The 3051 S uses these values and highly flexible configuration options for customization to detect many user-defined or application specific abnormal situations (e.g. detecting plugged impulse lines and fluid composition change).

Wireless Self-Organizing Networks

Output
WirelessHART, 2.4 GHz DSSS.
Wireless, 2.4 GHz DSSS or 900 MHz FHSS.

Local Display (WirelessHART only)

The optional five-digit LCD can display user-selectable information such as primary variable in engineering units, percent of range, sensor module temperature, and electronics temperature. Display updates at up to once per minute.

Local Display

The optional five-digit LCD can display primary variable in engineering units. Display updates at update rate up to once per minute.

Update Rate

WirelessHART, user selectable 8 sec . to 60 min . Wireless, user selectable 15 sec . to 60 min .

Power Module (WirelessHART only)

Field replaceable, keyed connection eliminates the risk of incorrect installation, Intrinsically Safe Lithium-thionyl chloride Power Module with polybutadine terephthalate (PBT) enclosure. Ten-year life at one minute update rate. ${ }^{(1)}$
(1) Reference conditions are $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$, and routing data for three additional network devices.
NOTE: Continuous exposure to ambient temperature limits of $-40^{\circ} \mathrm{F}$ or $185^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ or $\left.85^{\circ} \mathrm{C}\right)$ may reduce specified life by less than 20 percent.

Power Module

Field replaceable, keyed connection eliminates the risk of incorrect installation, Intrinsically Safe Lithium-thionyl chloride Power Module with polybutadine terephthalate (PBT) enclosure. Five-year life at one minute update rate, ten-year life at ten minute update rate. ${ }^{(1)}$
(1) Reference conditions are $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$, and routing data for three additional network devices.
NOTE: Continuous exposure to ambient temperature limits of $-40^{\circ} \mathrm{F}$ or $185^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ or $\left.85^{\circ} \mathrm{C}\right)$ may reduce specified life by less than 20 percent.

Overpressure Limits

Transmitters withstand the following limits without damage:
3051SMV__1: Differential \& Static Pressure, Temperature
3051SMV__2: Differential Pressure \& Static Pressure

Static	Differential Pressure		
	Range 1	Range 2	Range 3
Range 3	1600 psi	1600 psi	1600 psi
GP/AP	$(110,3 \mathrm{bar})$	$(110,3 \mathrm{bar})$	$(110,3 \mathrm{bar})$
Range 4	2000 psi	3626 psi	3626 psi
GP/AP	$(137,9 \mathrm{bar})$	$(250 \mathrm{bar})$	$(250 \mathrm{bar})$

3051SMV__ 3: Differential Pressure \& Temperature 3051SMV_-_ 4: Differential Pressure
3051S_CD: Coplanar Differential Pressure
3051S_CG: Coplanar Gage Pressure
Range 0: 750 psi (51,7 bar)
Range 1: 2000 psig (137,9 bar)
Ranges 2-5: 3626 psig (250,0 bar)
4500 psig (310,3 bar) for option code P9
6092 psig (420 bar) for option code P0 (Classic only)

3051S_CA: Coplanar Absolute Pressure
Range 0: 60 psia ($4,13 \mathrm{bar}$)
Range 1: 750 psia ($51,7 \mathrm{bar}$)
Range 2: 1500 psia (103,4 bar)
Range 3: 1600 psia (110,3 bar)
Range 4: 6000 psia (413,7 bar)
3051S_T: In-Line Gage or Absolute Pressure
Range 1: 750 psi ($51,7 \mathrm{bar}$)
Range 2: 1500 psi (103,4 bar)
Range 3: 1600 psi (110,3 bar)
Range 4: 6000 psi (413,7 bar)
Range 5: 15000 psi (1034,2 bar)

3051S_L: Coplanar Liquid Level

Limit is flange rating or sensor rating, whichever is lower (see the table below).

Standard	Type	CS Rating	SST Rating
ANSI/ASME	Class 150	285 psig	275 psig
ANSI/ASME	Class 300	740 psig	720 psig
ANSI/ASME	Class 600	1480 psig	1440 psig
At $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$, the rating decreases with increasing temperature, per ANSI/ASME B16.5.			
DIN	PN 10-40	40 bar	40 bar
DIN	PN 10/16	16 bar	16 bar
DIN	PN 25/40	40 bar	40 bar
At $248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, the rating decreases with increasing temperature, per DIN 2401.			

Static Pressure Limit

3051SMV__1: Differential \& Static Pressure, Temperature 3051SMV__2: Differential Pressure \& Static Pressure
Operates within 0.5 psia ($0,03 \mathrm{bar}$) and the values in the table below:

Static	Differential Pressure		
	Range 1	Range 2	Range 3
Range 3	800 psi	800 psi	800 psi
GP/AP	$(57,91 \mathrm{bar})$	$(57,91 \mathrm{bar})$	$(57,91 \mathrm{bar})$
Range 4	2000 psi	3626 psi	3626 psi
GP/AP	$(137,9 \mathrm{bar})$	$(250 \mathrm{bar})$	$(250 \mathrm{bar})$

[^2]
Burst Pressure Limits

3051SMV and 3051S_C with Coplanar or Traditional Process Flange

10000 psig (689,5 bar)
3051S_T: In-Line Gage or Absolute Pressure
Ranges 1-4: 11000 psi (758,4 bar)
Range 5: 26000 psig (1792,64 bar)

Rosemount 3051S Series

Temperature Limits

Ambient

-40 to $185^{\circ} \mathrm{F}\left(-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
With LCD display ${ }^{(1)}:-40$ to $175{ }^{\circ} \mathrm{F}\left(-40\right.$ to $\left.80^{\circ} \mathrm{C}\right)$
With option code PO: -20 to $185^{\circ} \mathrm{F}\left(-29\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
(1) LCD display may not be readable and LCD updates will be slower at temperatures below $-4^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right)$.

Storage

-50 to $185^{\circ} \mathrm{F}\left(-46\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
With LCD display: -40 to $185^{\circ} \mathrm{F}$ (-40 to $85^{\circ} \mathrm{C}$)
With Wireless Output: -40 to $185{ }^{\circ} \mathrm{F}\left(-40\right.$ to $85^{\circ} \mathrm{C}$)

Process Temperature Limits

At atmospheric pressures and above:

3051SMV and 3051S_C	
Silicone Fill Sensor ${ }^{(1)(2)}$	
with Coplanar Flange	-40 to $250{ }^{\circ} \mathrm{F}\left(-40 \text { to } 121^{\circ} \mathrm{C}\right)^{(3)}$
with Traditional Flange	-40 to $300{ }^{\circ} \mathrm{F}\left(-40 \text { to } 149{ }^{\circ} \mathrm{C}\right)^{(3)(4)}$
with Level Flange	-40 to $300^{\circ} \mathrm{F}\left(-40 \text { to } 149{ }^{\circ} \mathrm{C}\right)^{(3)}$
with 305 Integral Manifold	-40 to $300{ }^{\circ} \mathrm{F}\left(-40 \text { to } 149{ }^{\circ} \mathrm{C}\right)^{(3)(4)}$
Inert Fill Sensor ${ }^{(1)(5)}$	-40 to $185^{\circ} \mathrm{F}\left(-40 \text { to } 85^{\circ} \mathrm{C}\right)^{(6)(7)}$
3051S_T In-Line (Process Fill Fluid)	
Silicone Fill Sensor ${ }^{(1)}$	-40 to $250{ }^{\circ} \mathrm{F}\left(-40 \text { to } 121^{\circ} \mathrm{C}\right)^{(3)}$
Inert Fill Sensor ${ }^{(1)}$	-22 to $250{ }^{\circ} \mathrm{F}\left(-30 \text { to } 121{ }^{\circ} \mathrm{C}\right)^{(3)}$
3051S_L Low-Side Temperature Limits	
Silicone Fill Sensor ${ }^{(1)}$	-40 to $250{ }^{\circ} \mathrm{F}\left(-40 \text { to } 121^{\circ} \mathrm{C}\right)^{(3)}$
Inert Fill Sensor ${ }^{(1)}$	0 to $185{ }^{\circ} \mathrm{F}\left(-18 \text { to } 85{ }^{\circ} \mathrm{C}\right)^{(3)}$
3051S_L High-Side Temperature Limits (Process Fill Fluid)	
Syltherm ${ }^{(8)}$ XLT	-102 to $293{ }^{\circ} \mathrm{F}\left(-75\right.$ to $\left.145^{\circ} \mathrm{C}\right)$
D. C. ${ }^{\circledR}$ Silicone $704{ }^{(8)}$	32 to $400{ }^{\circ} \mathrm{F}\left(0\right.$ to $\left.205{ }^{\circ} \mathrm{C}\right)$
D. C. Silicone 200	-49 to $400{ }^{\circ} \mathrm{F}$ (-45 to $205{ }^{\circ} \mathrm{C}$)
Inert (Halocarbon)	-49 to $320^{\circ} \mathrm{F}\left(-45\right.$ to $\left.160^{\circ} \mathrm{C}\right)$
Glycerin and Water	5 to $203{ }^{\circ} \mathrm{F}\left(-15\right.$ to $\left.95^{\circ} \mathrm{C}\right)$
Neobee M-20 ${ }^{\text {® }}$	5 to $400{ }^{\circ} \mathrm{F}\left(-15\right.$ to $\left.205^{\circ} \mathrm{C}\right)$
Propylene Glycol and Water	5 to $203{ }^{\circ} \mathrm{F}\left(-15\right.$ to $\left.95{ }^{\circ} \mathrm{C}\right)$

[^3]
Humidity Limits

0-100\% relative humidity

Turn-On Time ${ }^{(1)}$

Performance within specifications less than 5 seconds for 3051SMV (typical) and 2 seconds for 3051S (typical) after power is applied to the transmitter.

$$
\text { (1) Does not apply to wireless option code } X \text {. }
$$

Volumetric Displacement

Less than $0.005 \mathrm{in}^{3}\left(0,08 \mathrm{~cm}^{3}\right)$

Damping ${ }^{(1)}$

Analog output response to a step change is user-selectable from 0 to 60 seconds for one time constant. For 3051SMV, each variable can be individually adjusted. This software damping is in addition to sensor module response time.

$$
\text { (1) Does not apply to wireless option code } X \text {. }
$$

Failure Mode Alarm

HART 4-20mA (output option code A)

If self-diagnostics detect a gross transmitter failure, the analog signal will be driven offscale to alert the user. Rosemount standard (default), NAMUR, and custom alarm levels are available (see Alarm Configuration below).
High or low alarm signal is software-selectable or hardware-selectable via the optional switch (option D1).

Alarm Configuration

	High Alarm	Low Alarm
Default	$\geq 21.75 \mathrm{~mA}$	$\leq 3.75 \mathrm{~mA}$
NAMUR compliant $^{(1)}$	$\geq 22.5 \mathrm{~mA}$	$\leq 3.6 \mathrm{~mA}$
Custom levels $^{(2)}$	$20.2-23.0 \mathrm{~mA}$	$3.6-3.8 \mathrm{~mA}$

(1) Analog output levels are compliant with NAMUR recommendation NE 43, see option codes C4 or C5.
(2) Low alarm must be 0.1 mA less than low saturation and high alarm must be 0.1 mA greater than high saturation.

Safety-Certified Transmitter Failure Values ${ }^{(1)}$
Safety accuracy: 2.0\% ${ }^{(2)}$
Safety response time: 1.5 seconds
(1) Does not apply to wireless option code X.
(2) A 2% variation of the transmitter $m A$ output is allowed before a safety trip. Trip values in the DCS or safety logic solver should be derated by 2%.

PHYSICAL SPECIFICATIONS

Electrical Connections

$1 / 2-14$ NPT, G $1 / 2$, and M20 $\times 1.5$ (CM20) conduit. HART interface connections fixed to terminal block for Output code A and X.

Process Connections

3051SMV and 3051S_C
$1 / 4-18$ NPT on $2^{1 / 8-i n}$. centers
 $2^{1 / 4-i n . ~(~} 57.2 \mathrm{~mm}$) centers (process adapters)
3051S_T
$1 / 2-14$ NPT female,
Non-Threaded instrument flange (available in SST for Range 1-4 transmitters only),
$\mathrm{G}^{1 / 2}$ A DIN 16288 Male (available in SST for Range 1-4 transmitters only), or
Autoclave type F-250-C (Pressure relieved $9 / 16-18$ gland thread;
${ }^{1} / 4$ OD high pressure tube 60° cone; available in SST for Range 5 transmitters only).
3051S_L
High pressure side: 2-in.(50.8 mm), 3-in. (72 mm), or $4-\mathrm{in}$. (102 mm), ASME B 16.5 (ANSI) Class 150, 300 or 600 flange; 50,80 or 100 mm , DIN 2501 PN 40 or 10/16 flange Low pressure side: ${ }^{1 / 4-18}$ NPT on flange, ${ }^{1 / 2-14 ~ N P T}$ on process adapter

Process-Wetted Parts

Isolating Diaphragm Material	3051SMV	3051S_			
		CD, CG	T	CA	L
316L SST (UNS S31603)	-	-	-	-	
Alloy C-276 (UNS N10276)	-	-	-	-	
Alloy 400 (UNS N04400)	-	-		-	$\begin{aligned} & \frac{0}{0} \\ & \underset{\sim}{0} \\ & 0 \end{aligned}$
Tantalum (UNS R05440)	-	-			¢
Gold-plated Alloy 400	-	-		-	
Gold-plated 316L SST	-	-		-	

Drain/Vent Valves

316 SST, Alloy C-276, or Alloy 400/K-500 ${ }^{(1)}$ material
(Drain vent seat: Alloy 400, Drain vent stem: Alloy K-500)
(1) Alloy 400/K-500 is not available with 3051S_L.

Process Flanges and Adapters

Plated carbon steel
SST: CF-8M (Cast 316 SST) per ASTM A743
Cast C-276: CW-12MW per ASTM A494
Cast Alloy 400: M-30C per ASTM A494

Wetted O-rings

Glass-filled PTFE
(Graphite-filled PTFE with Isolating Diaphragm code 6)

3051S_L Process Wetted Parts

Flanged Process Connection (Transmitter High Side)

Process Diaphragms, Including Process Gasket Surface
316L SST, Alloy C-276, or Tantalum
Extension
CF-3M (Cast 316L SST, material per ASTM A743), or
CW-12MW (Cast C-276, material ASTM A494); fits schedule 40 and 80 pipe

Mounting Flange

Zinc-cobalt plated CS or 316 SST
Reference Process Connection (Transmitter Low Side)
Isolating Diaphragms
316L SST or Alloy C-276
Process Flange and Adapter
CF-8M (Cast 316 SST, material per ASTM A743)

Non-Wetted Parts

Electronics Housing

Low-copper aluminum alloy or SST: CF-3M (Cast 316L SST) or CF-8M (Cast 316 SST)
NEMA 4X, IP 66, IP 68 ($66 \mathrm{ft}(20 \mathrm{~m}$) for 168 hours)
Note: IP 68 not available with Wireless Output.

Coplanar Sensor Module Housing

SST: CF-3M (Cast 316L SST)

Bolts

Plated carbon steel per ASTM A449, Type 1
Austenitic 316 SST per ASTM F593
ASTM A453, Class D, Grade 660 SST
ASTM A193, Grade B7M alloy steel
ASTM A193, Class 2, Grade B8M SST
Alloy K-500

Sensor Module Fill Fluid

Silicone or inert halocarbon (Inert is not available with 3051S_CA). In-Line series uses Fluorinert ${ }^{\circledR}$ FC-43.
Process Fill Fluid (Liquid Level Only)
3051S_L: Syltherm XLT, D.C. ${ }^{\circledR}$ Silicone 704,
D.C. Silicone 200, inert, glycerin and water,

Neobee M-20, propylene glycol and water.

Paint

Polyurethane
Cover O-rings
Buna-N

Wireless Antenna

PBT/ polycarbonate (PC) integrated omnidirectional antenna

Power Module

Field replaceable, keyed connection eliminates the risk of incorrect installation, Intrinsically Safe Lithium-thionyl chloride Power Module with PBT enclosure

Rosemount 3051S Series

Shipping Weights

SuperModule Platform Weights

SuperModule Platform	Weight in lb. (kg)
3051SMV ${ }^{(1)}$ and 3051S_C ${ }^{(1)}$	$3.1(1,4)$
3051S_T	$1.4(0,6)$

(1) Flange and bolts not included.

Transmitter Weights Without Options

Complete Transmitter ${ }^{(1)}$	Weight in lb. (kg)
3051S_C (SST Flange) with junction box housing	$6.3(2,8)$
3051S_T with junction box housing	$3.2(1,4)$
3051SMV and 3051S_C (SST Flange)	
with PlantWeb housing	$6.7(3,1)$
3051S_T with PlantWeb housing	$3.7(1,7)$
3051S_C (SST Flange) with wireless PlantWeb housing	$7.3(3,3)$
3051S_T with wireless PlantWeb housing	$4.2(1,9)$

(1) Fully functional transmitter with module, housing, terminal block, and covers. Does not include LCD display.

3051S_L Weights Without SuperModule Platform, Housing, or Transmitter Options

Flange	Flush lb. (kg)	$\begin{aligned} & \text { 2-in. Ext. } \\ & \text { Ib (kg) } \end{aligned}$	$\begin{aligned} & \text { 4-in. Ext. } \\ & \text { Ib (kg) } \end{aligned}$	$\begin{aligned} & \text { 6-in. Ext. } \\ & \text { lb (kg) } \end{aligned}$
2-in., 150	$9.5(4,3)$	-	-	-
3-in., 150	$15.7(7,1)$	$16.4(7,4)$	17.6 (8,0)	18.9 (8,6)
4-in., 150	21.2 (9,6)	$20.9(9,5)$	22.1 (10,0)	23.4 (10,6)
2-in., 300	11.3 (5,1)	-	-	-
3-in., 300	19.6 (8,9)	20.3 (9,2)	21.5 (9,8)	$22.8(10,3)$
4-in., 300	30.4 (13.8)	30.3 (13,7)	$31.5(14,3)$	32.8 (14,9)
2-in., 600	$12.8(5,8)$	-	-	-
3-in., 600	$22.1(10,0)$	$22.8(10,3)$	24.0 (10,9)	25.3 (11,5)
DN 50 / PN 40	11.3 (5,1)	-	-	-
DN 80 / PN 40	$16.0(7,3)$	$16.7(7,6)$	17.9 (8,1)	19.2 (8,7)
DN 100 / PN 10/16	$11.2(5,1)$	$11.9(5,4)$	$13.1(5,9)$	14.4 (6,5)
DN 100 / PN 40	12.6 (5,7)	13.3 (6,0)	14.5 (6,6)	15.8 (7,1)

Transmitter Option Weights

Option Code	Option	Add Ib (kg)
1J, 1K, 1L	SST PlantWeb Housing	$3.5(1,6)$
2J	SST Junction Box Housing	$3.4(1,5)$
7J	SST Quick Connect	$0.4(0,2)$
2A, 2B, 2C	Aluminum Junction Box Housing	$1.1(0,5)$
1A, 1B, 1C	Aluminum PlantWeb Housing	$1.1(0,5)$
M5	LCD Display for Aluminum PlantWeb Housing ${ }^{(1)}$,	$0.8(0,4)$
	LCD Display for SST PlantWeb Housing ${ }^{(1)}$	$1.6(0,7)$
B4	SST Mounting Bracket for Coplanar Flange	$1.2(0,5)$
B1, B2, B3	Mounting Bracket for Traditional Flange	$1.7(0,8)$
B7, B8, B9	Mounting Bracket for Traditional Flange with SST Bolts	$1.7(0,8)$
BA, BC	SST Bracket for Traditional Flange	$1.6(0,7)$
B4	SST Mounting Bracket for In-Line	$1.3(0,6)$
F12, F22	SST Traditional Flange with SST Drain Vents ${ }^{(2)}$	$3.2(1,5)$
F13, F23	Cast C-276 Traditional Flange with Alloy C-276 Drain Vents ${ }^{(2)}$	$3.6(1,6)$
E12, E22	SST Coplanar Flange with SST Drain Vents	$1.9(0,9)$
F14, F24	Cast Alloy 400 Traditional Flange with Alloy 400/K-500 Drain Vents ${ }^{(2)}$	$3.6(1,6)$
F15, F25	SST Traditional Flange with Alloy C-276 Drain Vents	
G21	Level Flange-3 in., 150	$3.2(1,5)$
G22	Level Flange-3 in., 300	$12.6(5,7)$
G11	Level Flange-2 in., 150	$15.9(7,2)$
G12	Level Flange-2 in., 300	$6.8(3,1)$
G31	DIN Level Flange, SST, DN 50, PN 40	$8.2(3,7)$
G41	DIN Level Flange, SST, DN 80, PN 40	$7.8(3,5)$

(1) Includes LCD display and display cover.
(2) Includes mounting bolts.

Item	Weight in lb. (kg)		Item
Aluminum Standard Cover	$0.4(0,2)$	LCD Display	Weight in lb. (kg)
SST Standard Cover	$1.3(0,6)$		$0.1(0,04)$
Aluminum Display Cover	$0.7(0,3)$		Punction Box Terminal Block

Rosemount 3051S MultiVariable Certifications

Approved Manufacturing Locations
Rosemount Inc. - Chanhassen, Minnesota USA
Emerson Process Management GmbH \& Co. - Wessling, Germany
Emerson Process Management Asia Pacific Private Limited Singapore
Beijing Rosemount Far East Instrument Co., LTD — Beijing, China

Ordinary Location Certification for FM

As standard, the transmitter has been examined and tested to determine that the design meets basic electrical, mechanical, and fire protection requirements by FM, a nationally recognized testing laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).

European Directive Information

The EC declaration of conformity for all applicable European directives for this product can be found at www.rosemount.com. A hard copy may be obtained by contacting an Emerson Process Management representative.

ATEX Directive (94/9/EC)
Emerson Process Management complies with the ATEX Directive.

European Pressure Equipment Directive (PED) (97/23/EC)
Models with Differential Pressure Ranges $=2$ to 5 inclusive with
Static Pressure $=$ Range 4 only. P9 and P0 options also.
All other Model 3051SMV Pressure Transmitters

- Sound Engineering Practice

Transmitter Attachments: Diaphragm Seal - Process Flange Manifold — Sound Engineering Practice
Primary Elements, Flowmeter

- See appropriate Primary Element QIG

Electro Magnetic Compatibility (EMC) (2004/108/EC)
EN 61326-1:2006 and EN 61326-2-3:2006

Hazardous Locations Certifications

North American Certifications

FM Approvals
E5 Explosion-proof for Class I, Division 1, Groups B, C, and D; dust-ignition proof for Class II and Class III, Division 1, Groups E, F, and G; hazardous locations; enclosure Type $4 X$, conduit seal not required.
15 Intrinsically Safe for use in Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, and G; Class III, Division 1; Class I, Zone 0 AEx ia IIC when connected in accordance with Rosemount drawing 03151-1206; Non-incendive for Class I, Division 2, Groups A, B, C, and D Enclosure Type 4X
For entity parameters see control drawing 03151-1206.

Canadian Standards Association (CSA)
All CSA hazardous approved transmitters are certified per ANSI/ISA 12.27.01-2003.
E6 Explosion-proof for Class I, Division 1, Groups B, C, and D; Dust-Ignition-Proof for Class II and Class III, Division 1, Groups E, F, and G; suitable for Class I, Division 2, Groups A, B, C, and D, CSA Enclosure Type 4X; conduit seal not required.
I6 Intrinsically Safe for Class I, Division 1, Groups A, B, C, and D when connected in accordance with Rosemount drawings 03151-1207;
For entity parameters see control drawing 03151-1207.

European Certifications

I1 ATEX Intrinsic Safety
Certificate No.: 08ATEX0064X «xx II 1G
Ex ia IIC T4 ($\mathrm{T}_{\mathrm{a}}=-60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) -HART C $\in 1180$
Input Parameters

Loop $/$ Power	Groups
$\mathrm{U}_{\mathrm{i}}=30 \mathrm{~V}$	HART
$\mathrm{I}_{\mathrm{i}}=300 \mathrm{~mA}$	HART
$\mathrm{P}_{\mathrm{i}}=1.0 \mathrm{~W}$	HART
$\mathrm{C}_{\mathrm{i}}=14.8 \mathrm{nF}$	HART
$\mathrm{L}_{\mathrm{i}}=0$	HART

Special conditions for safe use (x)
The apparatus is not capable of withstanding the 500 V test as defined in Clause 6.3.12 of EN 60079-11. This must be considered during installation.

N1 ATEX Type n
Certificate No.: Baseefa 08ATEX0065X < $\left.\varepsilon_{x}\right\rangle \| 3$ G
Ex nA nL IIC T4 ($\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$)
$\mathrm{Ui}=45 \mathrm{Vdc}$ max
IP66
C
Special conditions for safe use (x)
The apparatus is not capable of withstanding the 500 V insulation test required by Clause 6.8.1 of EN 60079-15. This must be taken into account when installing the apparatus.
ND ATEX Dust
Certificate No.: BAS01ATEX1303X Exy II 1 D
$\mathrm{T} 105^{\circ} \mathrm{C}\left(-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 85^{\circ} \mathrm{C}\right)$
$V_{\text {max }}=42.4$ volts max
$A=24 \mathrm{~mA}$
IP66
c $\in 1180$

Special conditions for safe use (x)

The user must ensure that the maximum rated voltage and current (42.4 volts, 22 milliampere, DC) are not exceeded. All connections to other apparatus or associated apparatus shall have control over this voltage and current equivalent to a category "ib" circuit according to EN 60079-11.

1. Cable entries must be used which maintain the ingress protection of the enclosure to at least IP66.
2. Unused cable entries must be filled with suitable blanking plugs which maintain the ingress protection of the enclosure to at least IP66.
3. Cable entries and blanking plugs must be suitable for the ambient range of the apparatus and capable of withstanding a 7 J impact test.
4. The 3051SMV must be securely screwed in place to maintain the ingress protection of the enclosure. (The 3051SMV SuperModule must be properly assembled to the 3051SMV housing to maintain ingress protection.)

E1 ATEX Flameproof
Certificate No.: KEMA 00ATEX2143X ©x. II 1/2 G
Ex d IIC T6 $\left(-50^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 65^{\circ} \mathrm{C}\right)$
Exd IIC T5 $\left(-50^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 80^{\circ} \mathrm{C}\right)$
$\mathrm{V}_{\text {max }}=42.4 \mathrm{~V}$
($\in 1180$
Special conditions for safe use (x)

1. Appropriate ex d blanking plugs, cable glands, and wiring needs to be suitable for a temperature of $90^{\circ} \mathrm{C}$.
2. This device contains a thin wall diaphragm. Installation, maintenance and use shall take into account the environmental conditions to which the diaphragm will be subjected. The manufacturer's instructions for maintenance shall be followed in detail to assure safety during its expected lifetime.
3. The 3051SMV does not comply with the requirements of IEC 60079-1 Clause 5.2, Table 2 for all joints. Contact Emerson Process Management for information on the dimensions of flameproof joints.

Japanese Certifications

E4 TIIS Flameproof
Consult factory for availability
14 TIIS Intrinsically Safe
Consult factory for availability

INMETRO Certifications

E2 INMETRO Flameproof BR-Ex d IIC T6/T5

I2 INMETRO Intrinsic Safety BR-Ex ia IIC T4

China (NEPSI) Certifications

E3 China Flameproof
Ex d II B+ $\mathrm{H}_{2} \mathrm{~T} 3 \sim \mathrm{~T} 5$
I3 China Intrinsic Safety Ex ia IIC T3/T4

IECEx Certifications

I7 IECEx Intrinsic Safety
Certificate No.: IECExBAS08.0025X
Ex ia IIC T4 $\left(\mathrm{T}_{\mathrm{a}}=-60^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$-HART
IP66
Input Parameters

Loop $/$ Power	Groups
$\mathrm{U}_{\mathrm{i}}=30 \mathrm{~V}$	HART
$\mathrm{I}_{\mathrm{i}}=300 \mathrm{~mA}$	HART
$\mathrm{P}_{\mathrm{i}}=1.0 \mathrm{~W}$	HART
$\mathrm{C}_{\mathrm{i}}=14.8 \mathrm{nF}$	HART
$\mathrm{L}_{\mathrm{i}}=0$	HART

Special conditions for safe use (x)
The 3051SMV HART 4-20mA is not capable of withstanding the 500V test as defined in clause 6.3.12 of IEC 60079-11. This must be taken into account during installation.
N7 IECEx Type n
Certificate No.: IECExBAS08.0026X
Ex nAnL IIC T4 ($\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)
Ui $=45 \mathrm{Vdc}$ MAX
IP66
Special conditions for safe use (x)
The apparatus is not capable of withstanding the 500 V insulation test required by Clause 6.8.1 of IEC 60079-15.
E7 IECEx Flameproof
Certificate No.: IECExKEM08.0010X
Ex d IIC T6 $\left(-50^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 65^{\circ} \mathrm{C}\right)$
Ex d IIC T5 $\left(-50^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 80^{\circ} \mathrm{C}\right)$
$V_{\text {max }}=42.4 \mathrm{~V}$
Special conditions for safe use (x)

1. Appropriate ex d blanking plugs, cable glands, and wiring needs to be suitable for a temperature of $90^{\circ} \mathrm{C}$.
2. This device contains a thin wall diaphragm. Installation, maintenance and use shall take into account the environmental conditions to which the diaphragm will be subjected. The manufacturer's instructions for maintenance shall be followed in detail to assure safety during its expected lifetime.
3. The 3051SMV does not comply with the requirements of IEC 60079-1 Clause 5.2, Table 2 for all joints. Contact Emerson Process Management for information on the dimensions of flameproof joints.

Combinations of Certifications

Stainless steel certification tag is provided when optional approval is specified. Once a device labeled with multiple approval types is installed, it should not be reinstalled using any other approval types. Permanently mark the approval label to distinguish it from unused approval types.
K1 Combination of E1, I1, N1, and ND
K2 Combination of E2 and I2
K4 Combination of E4 and I4
K5 Combination of E5 and I5
K6 Combination of E6 and I6
K7 Combination of E7, I7, and N7
KA Combination of E1, E6, I1, and I6
KB Combination of E5, E6, I5, and I6
KC Combination of E5, E1, I5 and I1
KD Combination of E5, E6, E1, I5, I6, and I1

Rosemount 3051S Certifications

Approved Manufacturing Locations

Rosemount Inc. - Chanhassen, Minnesota USA
Emerson Process Management GmbH \& Co. - Wessling, Germany
Emerson Process Management Asia Pacific Private Limited Singapore
Beijing Rosemount Far East Instrument Co., LTD — Beijing, China
Emerson Process Management LTDA — Sorocaba, Brazil
Emerson Process Management (India) Pvt. Ltd. — Daman, India

Ordinary Location Certification for FM

As standard, the transmitter has been examined and tested to determine that the design meets basic electrical, mechanical, and fire protection requirements by FM, a nationally recognized testing laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).

European Directive Information

The EC declaration of conformity for all applicable European directives for this product can be found at www.rosemount.com. A hard copy may be obtained by contacting an Emerson Process Management representative.

ATEX Directive (94/9/EC)
Emerson Process Management complies with the ATEX Directive.

European Pressure Equipment Directive (PED) (97/23/EC) Models 3051S_CA4; 3051S_CD2, 3, 4, 5; (also with P9 option) Pressure Transmitters - QS Certificate of Assessment EC No. PED-H-100, Module H Conformity Assessment All other Model 3051S Pressure Transmitters
— Sound Engineering Practice
Transmitter Attachments: Diaphragm Seal - Process Flange -
Manifold - Sound Engineering Practice
Primary Elements, Flowmeter

- See appropriate Primary Element QIG

Electro Magnetic Compatibility (EMC) (2004/108/EC)
EN 61326-1:1997 + A1, A2, and A3 - Industrial
Radio and Telecommunications Terminal Equipment Directive (R\&TTE)(1999/5/EC)

Emerson Process Management complies with the R\&TTE Directive.

HART \& Foundation Fieldbus Hazardous Locations Certifications

North American Certifications

FM Approvals
E5 Explosion-proof for Class I, Division 1, Groups B, C, and D; Dust Ignition-proof for Class II and Class III, Division 1, Groups E, F, and G; hazardous locations; enclosure Type $4 X$, conduit seal not required when installed according to Rosemount drawing 03151-1003.

I5/IE Intrinsically Safe for use in Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, and G; Class III, Division 1; Class I, Zone 0 AEx ia IIC when connected in accordance with Rosemount drawing 03151-1006; Non-Incendive for Class I, Division 2, Groups A, B, C, and D Enclosure Type 4X
For entity parameters see control drawing 03151-1006.
Canadian Standards Association (CSA)
All CSA hazardous approved transmitters are certified per ANSI/ISA 12.27.01-2003.
E6 Explosion-proof for Class I, Division 1, Groups B, C, and D; Dust Ignition-proof for Class II and Class III, Division 1, Groups E, F, and G; suitable for Class I, Division 2, Groups A, B, C, and D, when installed per Rosemount drawing 03151-1013, CSA Enclosure Type 4X; conduit seal not required.
I6/IF Intrinsically Safe for Class I, Division 1, Groups A, B, C, and D when connected in accordance with Rosemount drawings 03151-1016;
For entity parameters see control drawing 03151-1016.

European Certifications

I1/IA ATEX Intrinsic Safety
Certificate No.: BAS01ATEX1303X 气x II 1G
Ex ia IIC T4 ($\mathrm{T}_{\mathrm{a}}=-60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) -HART/Remote Display/Quick Connect/HART Diagnostics
Ex ia IIC T4 ($\mathrm{T}_{\mathrm{a}}=-60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) -Foundation fieldbus Ex ia IIC T4 ($\mathrm{T}_{\mathrm{a}}=-60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$) -FISCO C $\in 1180$
Input Parameters

Loop $/$	
Power	Groups
$\mathrm{U}_{\mathrm{i}}=30 \mathrm{~V}$	HART / FoundATION fieldbus/ Remote Display / Quick Connect / HART Diagnostics
$\mathrm{U}_{\mathrm{i}}=17.5 \mathrm{~V}$	FISCO
$\mathrm{I}_{\mathrm{i}}=300 \mathrm{~mA}$	HART / FoundATION fieldbus/ Remote Display / Quick Connect / HART Diagnostics
$\mathrm{I}_{\mathrm{i}}=380 \mathrm{~mA}$	FISCO
$\mathrm{P}_{\mathrm{i}}=1.0 \mathrm{~W}$	HART / Remote Display / Quick Connect /
$\mathrm{P}_{\mathrm{i}}=1.3 \mathrm{~W}$	HART Diagnostics
$\mathrm{P}_{\mathrm{i}}=5.32 \mathrm{~W}$	FOUNDATION fieldbus
$\mathrm{C}_{\mathrm{i}}=30 \mathrm{nF}$	SuperModule Platform / Quick Connect
$\mathrm{C}_{\mathrm{i}}=11.4 \mathrm{nF}$	HART / HART Diagnostics
$\mathrm{C}_{\mathrm{i}}=0$	FounDATION fieldbus / Remote Display / FISCO
$\mathrm{L}_{\mathrm{i}}=0$	HART / FounDATION fieldbus/ FISCO / Quick
$\mathrm{L}_{\mathrm{i}}=60 \mu \mathrm{H}$	Connect / HART Diagnostics
Remote Display	

Special conditions for safe use (x)

1. The apparatus, excluding the Types 3051 S-T and 3051 S-C (In-line and Coplanar SuperModule Platforms respectively), is not capable of withstanding the 500 V test as defined in Clause 6.4.12 of EN 50020. This must be considered during installation.
2. The terminal pins of the Types 3051 S-T and 3051 S-C must be protected to IP20 minimum.

Rosemount 3051S Series

N1 ATEX Type n
Certificate No．：BAS01ATEX3304X © ®x $^{\circ}$ II 3 G
EEx nAnL IIC T4（ $\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ ）
$\mathrm{Ui}=45 \mathrm{Vdc}$ max
IP66
C ϵ
Special conditions for safe use（x）
The apparatus is not capable of withstanding the 500 V insulation test required by Clause 6．8．1 of EN 60079－15．
This must be taken into account when installing the apparatus．
ND ATEX Dust
Certificate No．：BAS01ATEX1374X 纤 II 1 D
$\mathrm{T} 105^{\circ} \mathrm{C}\left(-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 85^{\circ} \mathrm{C}\right)$
$V_{\text {max }}=42.4$ volts max
$\mathrm{A}=22 \mathrm{~mA}$
IP66
c $\in 1180$
Special conditions for safe use（ \mathbf{x} ）
1．The user must ensure that the maximum rated voltage and current（ 42.4 volts， 22 milliampere，DC）are not exceeded．All connections to other apparatus or associated apparatus shall have control over this voltage and current equivalent to a category＂ib＂circuit according to EN 50020.
2．Cable entries must be used which maintain the ingress protection of the enclosure to at least IP66．
3．Unused cable entries must be filled with suitable blanking plugs which maintain the ingress protection of the enclosure to at least IP66．
4．Cable entries and blanking plugs must be suitable for the ambient range of the apparatus and capable of withstanding a 7 J impact test．
5．The 3051 S must be securely screwed in place to maintain the ingress protection of the enclosure．（The 3051S SuperModule must be properly assembled to the 3051S housing to maintain ingress protection．）
E1 ATEX Flameproof
Certificate No．：KEMAOOATEX2143X 《这 II 1／2 G
Ex d IIC T6（ $-50^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 65^{\circ} \mathrm{C}$ ）
Exd IIC T5 $\left(-50^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 80^{\circ} \mathrm{C}\right)$
$\mathrm{V}_{\text {max }}=42.4 \mathrm{~V}$
C $\mathcal{E} 1180$

Special conditions for safe use（ \mathbf{x} ）

1．Appropriate exd blanking plugs，cable glands，and wiring needs to be suitable for a temperature of $90^{\circ} \mathrm{C}$ ．
2．This device contains a thin wall diaphragm．Installation， maintenance and use shall take into account the environmental conditions to which the diaphragm will be subjected．The manufacturer＇s instructions for maintenance shall be followed in detail to assure safety during its expected lifetime．
3．The 3051 S does not comply with the requirements of EN 60079－1 Clause 5．2，Table 2 for all joints．Contact Emerson Process Management for information on the dimensions of flameproof joints．

Japanese Certifications

E4 TIIS Flameproof
Ex d IIC T6

Certificate	Description
TC15682	Coplanar with Junction Box Housing
TC15683	Coplanar with PlantWeb Housing
TC15684	Coplanar with PlantWeb Housing and LCD Display
TC15685	In－Line SST with Junction Box Housing
TC15686	In－Line Alloy C－276 with Junction Box Housing
TC15687	In－Line SST with PlantWeb Housing
TC15688	In－Line Alloy C－276 with PlantWeb Housing
TC15689	In－Line SST with PlantWeb Housing and LCD Display
TC15690	In－Line Alloy C－276 with PlantWeb Housing and LCD Display
TC17102	Remote Display

China（NEPSI）Certifications

I3 China Intrinsic Safety
Certificate No．（manufactured in Chanhassen，MN）：GYJ081078
Certificate No．（manufactured in Beijing，China）：GYJ06367
Ex ia IIC T3～T5
Input Parameters

Loop／ Power	Groups
$\mathrm{U}_{\mathrm{i}}=30 \mathrm{~V}$	HART／Foundation fieldbus／Remote Display／ Quick Connect／HART Diagnostics
$\mathrm{U}_{\mathrm{i}}=17.5 \mathrm{~V}$	FISCO
$\mathrm{l}_{\mathrm{i}}=300 \mathrm{~mA}$	HART／Foundation fieldbus／Remote Display／ Quick Connect／HART Diagnostics
$\mathrm{l}_{\mathrm{i}}=380 \mathrm{~mA}$	FISCO
$\mathrm{P}_{\mathrm{i}}=1.0 \mathrm{~W}$	HART／Remote Display／Quick Connect／ HART Diagnostics
$\mathrm{P}_{\mathrm{i}}=1.3 \mathrm{~W}$	Foundation fieldbus
$\mathrm{P}_{\mathrm{i}}=5.32 \mathrm{~W}$	FISCO
$\mathrm{C}_{\mathrm{i}}=30 \mathrm{nF}$	SuperModule Platform／Quick Connect
$\mathrm{C}_{\mathrm{i}}=11.4 \mathrm{nF}$	HART／HART Diagnostics
$\mathrm{C}_{\mathrm{i}}=0$	Foundation fieldbus／Remote Display／FISCO
$\mathrm{L}_{\mathrm{i}}=0$	HART／Foundation fieldbus／FISCO／Quick Connect／HART Diagnostics
$\mathrm{L}_{\mathrm{i}}=60 \mu \mathrm{H}$	Remote Display

E3 China Flameproof
Certificate No．：GYJ06366
Exd IIB $+\mathrm{H}_{2} \mathrm{~T} 3 \sim \mathrm{~T} 5$

INMETRO Certifications

I2 INMETRO Intrinsic Safety
Certificate No．（manufactured in Chanhassen，MN）：
CEPEL－Ex－0722／05X
Certificate No．（manufactured in Brazil）：CEPEL－Ex－1414／07X
BR－Ex ia IIC T4 IP66W
E2 INMETRO Flameproof Certificate No．（manufactured in Chanhassen，MN）： CEPEL－Ex－140／2003X
Certificate No．（manufactured in Brazil）：CEPEL－Ex－1413／07X BR－Ex d IIC T5／T6 IP66W

IECEx Certifications

E7 IECEx Flameproof
Certificate No.: IECExKEM08.0010X
Ex d IIC T6 $\left(-50^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 65^{\circ} \mathrm{C}\right)$
Ex d IIC T5 $\left(-50^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 80^{\circ} \mathrm{C}\right)$
$\mathrm{V}_{\text {max }}=42.4 \mathrm{~V}$
Special conditions for safe use (x)

1. Appropriate ex d blanking plugs, cable glands, and wiring needs to be suitable for a temperature of $90^{\circ} \mathrm{C}$.
2. This device contains a thin wall diaphragm. Installation, maintenance and use shall take into account the environmental conditions to which the diaphragm will be subjected. The manufacturer's instructions for maintenance shall be followed in detail to assure safety during its expected lifetime.
3. The 3051 S does not comply with the requirements of IEC 60079-1 Clause 5.2, Table 2 for all joints. Contact Emerson Process Management for information on the dimensions of flameproof joints.
I7IIG IECEx Intrinsic Safety
Certificate No.: IECExBAS04.0017X
Ex ia IIC T4 ($\mathrm{T}_{\mathrm{a}}=-60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) -HART/Remote
Display/Quick Connect/HART Diagnostics
Ex ia IIC T4 ($\mathrm{T}_{\mathrm{a}}=-60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) -Foundation fieldbus Ex ia IIC T4 ($\mathrm{T}_{\mathrm{a}}=-60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$) - FISCO IP66
Input Parameters

Loop / Power	Groups
$\mathrm{U}_{\mathrm{i}}=30 \mathrm{~V}$	HART / Foundation fieldbus/ Remote Display / Quick Connect / HART Diagnostics
$\mathrm{U}_{\mathrm{i}}=17.5 \mathrm{~V}$	FISCO
$\mathrm{I}_{\mathrm{i}}=300 \mathrm{~mA}$	HART / Foundation fieldbus/ Remote Display / Quick Connect / HART Diagnostics
$\mathrm{I}_{\mathrm{i}}=380 \mathrm{~mA}$	FISCO
$\mathrm{P}_{\mathrm{i}}=1.0 \mathrm{~W}$	HART / Remote Display / Quick Connect / HART Diagnostics
$\mathrm{P}_{\mathrm{i}}=1.3 \mathrm{~W}$	Foundation fieldbus
$\mathrm{P}_{\mathrm{i}}=5.32 \mathrm{~W}$	FISCO
$\mathrm{C}_{\mathrm{i}}=30 \mathrm{nF}$	SuperModule Platform / Quick Connect
$\mathrm{C}_{\mathrm{i}}=11.4 \mathrm{nF}$	HART / HART Diagnostics
$\mathrm{C}_{\mathrm{i}}=0$	Foundation fieldbus / Remote Display / FISCO / Quick Connect / HART Diagnostics
$L_{i}=0$	HART / Foundation fieldbus / FISCO / Quick Connect / HART Diagnostics
$\mathrm{L}_{\mathrm{i}}=60 \mu \mathrm{H}$	Remote Display

Special conditions for safe use (x)

1. The Models 3051S HART 4-20mA, 3051S fieldbus, 3051S Profibus and 3051S FISCO are not capable of withstanding the 500 V test as defined in clause 6.4.12 of IEC 60079-11. This must be taken into account during installation.
2. The terminal pins of the Types 3051S-T and 3051S-C must be protected to IP20 minimum.

N7 IECEx Type n
Certificate No.: IECExBAS04.0018X
Ex nC IIC T4 ($\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)
$\mathrm{Ui}=45 \mathrm{Vdc}$ MAX
IP66
Special conditions for safe use (x)
The apparatus is not capable of withstanding the 500 V insulation test required by Clause 8 of IEC 60079-15.

Combinations of Certifications

Stainless steel certification tag is provided when optional approval is specified. Once a device labeled with multiple approval types is installed, it should not be reinstalled using any other approval types. Permanently mark the approval label to distinguish it from unused approval types.
K1 Combination of E1, I1, N1, and ND
K2 Combination of E2 and I2
K5 Combination of E5 and I5
K6 Combination of E6 and I6
K7 Combination of E7, I7, and N7
KA Combination of E1, I1, E6, and I6
KB Combination of E5, I5, I6 and E6
KC Combination of E5, E1, I5 and I1
KD Combination of E5, I5, E6, I6, E1, and I1

Rosemount 3051S Wireless Certifications

Approved Manufacturing Locations

Rosemount Inc. - Chanhassen, Minnesota USA
Emerson Process Management GmbH \& Co. - Wessling, Germany
Emerson Process Management Asia Pacific Private Limited Singapore
Beijing Rosemount Far East Instrument Co., LTD — Beijing, China
Emerson Process Management LTDA - Sorocaba, Brazil
Emerson Process Management (India) Pvt. Ltd. - Daman, India

Telecommunication Compliance

All wireless devices require certification to ensure that they adhere to regulations regarding the use of the RF spectrum. Nearly every country requires this type of product certification. Emerson is working with governmental agencies around the world to supply fully compliant products and remove the risk of violating country directives or laws governing wireless device usage.

FCC and IC Approvals

This device complies with Part 15 of the FCC Rules. Operation is subject to the following conditions: This device may not cause harmful interference this device and must accept any interference received, including interference that may cause undesired operation.
This device must be installed to ensure a minimum antenna separation distance of 20 cm from all persons.

Ordinary Location Certification for FM

As standard, the transmitter has been examined and tested to determine that the design meets basic electrical, mechanical, and fire protection requirements by FM, a nationally recognized testing laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).

European Directive Information

The EC declaration of conformity for all applicable European directives for this product can be found at www.rosemount.com. A hard copy may be obtained by contacting an Emerson Process Management representative.
ATEX Directive (94/9/EC)
Emerson Process Management complies with the ATEX Directive.
European Pressure Equipment Directive (PED) (97/23/EC)
Models 3051S_CA4; 3051S_CD2, 3, 4, 5; (also with P9 option)
Pressure Transmitters - QS Certificate of Assessment -
EC No. PED-H-100, Module H Conformity Assessment
All other Model 3051S Pressure Transmitters
— Sound Engineering Practice
Transmitter Attachments: Diaphragm Seal - Process Flange -
Manifold - Sound Engineering Practice
Primary Elements, Flowmeter

- See appropriate Primary Element QIG

Electro Magnetic Compatibility (EMC) (2004/108/EC)
EN 61326-1:1997 A1, A2, A3 ${ }^{(1)}$
EN 61326-1:2006
EN 61326-2-3:2006
(1) Only applies to "Operating Frequency and Protocol" option code 1.

Radio and Telecommunications Terminal Equipment Directive

 (R\&TTE)(1999/5/EC)Emerson Process Management complies with the R\&TTE Directive.

Hazardous Locations Certifications

North American Certifications

Factory Mutual (FM) Approvals
15 FM Intrinsically Safe, Non-Incendive, and Dust Ignition-proof.
Intrinsically Safe for Class I/II/III, Division 1,
Groups A, B, C, D, E, F, and G.
Zone Marking: Class I, Zone 0, AEx ia IIC
Temperature Codes T 4 ($\mathrm{T}_{\mathrm{amb}}=-50$ to $70^{\circ} \mathrm{C}$)
Non-Incendive for Class I, Division 2, Groups A, B, C, and D.

Dust Ignition-proof for Class II/III, Division 1,
Groups E, F, and G.
Ambient temperature limits: -50 to $85^{\circ} \mathrm{C}$
For use with Rosemount SmartPower options 00753-9220-0001 only.
Enclosure Type 4X / IP66
CSA - Canadian Standards Association

Process Sealing

All CSA hazardous approved transmitters are certified per ANSI/ISA 12.27.01-2003.
16 CSA Intrinsically Safe
Intrinsically Safe for Class I, Division 1, Groups A, B, C, and D.

Temp Code T3C
Enclosure Type 4X / IP66
For use with Rosemount SmartPower options
00753-9220-0001 only.

Rosemount 3051S Series

European Certifications

I1 ATEX Intrinsic Safety
Certificate No.: BAS01ATEX1303X «xx II 1G
Ex ia IIC T4 ($\mathrm{T}_{\mathrm{a}}=-60^{\circ} \mathrm{C}$ to $\left.70^{\circ} \mathrm{C}\right)$
IP66
For use with Rosemount SmartPower options
00753-9220-0001 only.
c $\in 1180$
C $\in \mathbb{C D}^{(1)}$
Country ${ }^{(1)}$ Restriction

Bulgaria	General authorization required for outdoor use and public service
France	Outdoor use limited to 10mW e.i.r.p.
Italy	If used outside of own premises, general authorization is required.
Norway	May be restricted in the geographical area within a radius of 20 km from the center of Ny-Alesund.
Romania	Use on a secondary basis. Individual license required

(1) Only applies to "Operating Frequency and Protocol" option code 1.

Radio Power Label (See
Figure 1) indicates output power configuration of the radio. Devices with this label are configured for output power less than 10 mW e.i.r.p. At time of purchase the customer must specify ultimate country of installation and operation.

Figure 1.

IECEx Certifications

I7 IECEx Intrinsic Safety
Certificate No.: IECEx BAS 04.0017X
Ex ia IIC T4 ($\mathrm{Ta}=-60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)
For use with Rosemount SmartPower options
00753-9220-0001 only.
IP66

Dimensional Drawings

Dimensions are in inches (millimeters).
Process adapters (option D2) and Rosemount 305 integral manifolds must be ordered with the transmitter.

PlantWeb Housing with Coplanar SuperModule Platform

 and 305 Coplanar Integral Manifold

PlantWeb Housing with Coplanar SuperModule Platform and Coplanar Flange

Dimensions are in inches (millimeters).
Wireless PlantWeb Housing with In-Line and Coplanar SuperModule Platform

Dimensions are in inches (millimeters).

Wireless PlantWeb Housing with 3051S_L Liquid Level

Rosemount 3051S Series

Dimensions are in inches (millimeters).

Quick Connect with Coplanar SuperModule Platform and Coplanar Flange

Dimensions are in inches (millimeters).

Dimensions are in inches (millimeters).

Dimensions are in inches (millimeters).
PlantWeb Housing with Coplanar SuperModule Platform and Traditional Flange

Dimensions are in inches (millimeters).

Dimensions are in inches (millimeters).

PlantWeb Housing, Junction Box Housing, and Quick Connect with In-Line SuperModule Platform

Dimensions are in inches (millimeters).
In-line Mounting Configurations with Optional Mounting Bracket

Pipe Mount

Panel Mount

Dimensions are in inches (millimeters).

3051S_L Dimensional Specifications

Except where indicated, dimensions are in inches (millimeters).

| | Pipe
 Size | Flange
 Thickness A | Bolt Circle
 Diameter B | Outside
 Diameter C | No. of
 Bolts | Bolt Hole
 Diameter | Extension
 Diameter (1) \mathbf{D} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | O.D. Gasket |
| :---: |
| Surface E |

Class	Pipe Size	Process Side F	Lower Housing G		H
			$1 / 4$ NPT	$1 / 2$ NPT	
ASME B16.5 (ANSI) 150	2 (51)	2.12 (54)	0.97 (25)	1.31 (33)	5.65 (143)
	3 (76)	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
	4 (102)	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
ASME B16.5 (ANSI) 300	2 (51)	2.12 (54)	0.97 (25)	1.31 (33)	5.65 (143)
	3 (76)	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
	4 (102)	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
ASME B16.5 (ANSI) 600	2 (51)	2.12 (54)	0.97 (25)	1.31 (33)	7.65 (194)
	3 (76)	3.6 (91)	0.97 (25)	1.31 (33)	7.65 (194)
DIN 2501 PN 10-40	DN 50	2.4 (61)	0.97 (25)	1.31 (33)	5.65 (143)
DIN 2501 PN 25/40	DN 80	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
	DN 100	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
DIN 2501 PN 10/16	DN 100	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)

(1) Tolerances are $0.040(1,02),-0.020(0,51)$.

Ordering Information

Rosemount 3051S MultiVariable Transmitter

		Flange Material	Drain Vent	Bolting
EA2 ${ }^{(10)}$	Assemble to Rosemount Annubar Primary Element with Coplanar flange	SST	316 SST	
EA3 ${ }^{(10)}$	Assemble to Rosemount Annubar Primary Element with Coplanar flange	Cast C-276	Alloy C-276	
EA5 ${ }^{(10)}$	Assemble to Rosemount Annubar Primary Element with Coplanar flange	SST	Alloy C-276	
E11	Coplanar flange 1/4-18 NPT	Carbon Steel	316 SST	
E12	Coplanar flange $1 / 4-18$ NPT	SST	316 SST	
E13 ${ }^{(7)}$	Coplanar flange $1 / 4-18$ NPT	Cast C-276	Alloy C-276	
E14	Coplanar flange $\quad 1 / 4-18$ NPT	Cast Alloy 400	Alloy 400/K-500	
E15 ${ }^{(7)}$	Coplanar flange $\quad 1 / 4-18$ NPT	SST	Alloy C-276	
E16 ${ }^{(7)}$	Coplanar flange $\quad 1 / 4-18$ NPT	Carbon Steel	Alloy C-276	
E21	Coplanar flange $\quad \mathrm{RC}^{1 / 4}$	Carbon Steel	316 SST	
E22	Coplanar flange $\quad \mathrm{RC}^{1 / 4}$	SST	316 SST	
E23 ${ }^{(7)}$	Coplanar flange $\quad \mathrm{RC}^{1 / 4}$	Cast C-276	Alloy C-276	
E24	Coplanar flange $\quad \mathrm{RC}^{1 / 4}$	Cast Alloy 400	Alloy 400/K-500	
E25 ${ }^{(7)}$	Coplanar flange $\quad \mathrm{RC}^{1 / 4}$	SST	Alloy C-276	
E26 ${ }^{(7)}$	Coplanar flange $\quad \mathrm{RC}^{1 / 4}$	Carbon Steel	Alloy C-276	
F12	Traditional flange $1 / 4-18$ NPT	SST	316 SST	
F13 ${ }^{(7)}$	Traditional flange $\quad 1 / 4-18$ NPT	Cast C-276	Alloy C-276	
F14	Traditional flange $\quad 1 / 4-18$ NPT	Cast Alloy 400	Alloy 400/K-500	
F15 ${ }^{(7)}$	Traditional flange $\quad 1 / 4-18$ NPT	SST	Alloy C-276	
F22	Traditional flange \quad RC ${ }^{1 / 4}$	SST	316 SST	
F23 ${ }^{(7)}$	Traditional flange $\quad \mathrm{RC}^{1 / 4}$	Cast C-276	Alloy C-276	
F24	Traditional flange \quad RC ${ }^{1 / 4}$	Cast Alloy 400	Alloy 400/K-500	
F25 ${ }^{(7)}$	Traditional flange $\quad \mathrm{RC}^{1 / 4}$	SST	Alloy C-276	
F32	Bottom vent traditional flange $1 / 4-18$ NPT	SST	316 SST	
F42	Bottom vent traditional flange $\quad \mathrm{RC}{ }^{1 / 4}$	SST	316 SST	
F52	DIN-compliant traditional flange $1 / 4-18$ NPT	SST	316 SST	7/16-in. bolting
F62	DIN-compliant traditional flange $\quad 1 / 4-18$ NPT	SST	316 SST	M10 bolting
F72	DIN-compliant traditional flange $1 / 4-18$ NPT	SST	316 SST	M12 bolting
G11	Vertical mount level flange 2-in. ANSI class 150	SST		
G12	Vertical mount level flange 2-in. ANSI class 300	SST		
G14 ${ }^{(7)}$	Vertical mount level flange 2-in. ANSI class 150	Cast C-276		
G15 ${ }^{(7)}$	Vertical mount level flange 2-in. ANSI class 300	Cast C-276		
G21	Vertical mount level flange 3-in. ANSI class 150	SST		
G22	Vertical mount level flange 3-in. ANSI class 300	SST		
G24 ${ }^{(7)}$	Vertical mount level flange 3 -in. ANSI class 150	Cast C-276		
G25 ${ }^{(7)}$	Vertical mount level flange 3-in. ANSI class 300	Cast C-276		
G31	Vertical mount level flange DIN- DN 50 PN 40	SST		
G41	Vertical mount level flange DIN- DN 80 PN 40	SST		
Code	Output			
A	4-20 mA with digital signal based on HART protocol			
Code	Housing Style	Material ${ }^{(7)}$	Conduit Entry Size	
1A	PlantWeb housing	Aluminum	1/2-14 NPT	
1B	PlantWeb housing	Aluminum	M20 x 1.5 (CM20)	
1 C	PlantWeb housing	Aluminum	$\mathrm{G}^{1 / 2}$	
1J	PlantWeb housing	SST	1/2-14 NPT	
1K	PlantWeb housing	SST	M20 x 1.5 (CM20)	
1L	PlantWeb housing	SST	$\mathrm{G}^{1 / 2}$	
Code	Options			
RTD Cable (RTD Sensor must be ordered separately)				
C12	RTD Input with 12 ft . (3.66 m) of Shielded Cable			
C13	RTD Input with 24 ft . (7.32 m) of Shielded Cable			
C14	RTD Input with 75 ft . 22.86 m) of Shielded Cable			
$\mathrm{C} 20^{(12)}$	RTD Input with 27 in . (69 cm) of Armored Shielded Cable			
C21	RTD Input with 4 ft . $(1.22 \mathrm{~m}$) of Armored Shielded Cable			
C22	RTD Input with $12 \mathrm{ft}.(3.66 \mathrm{~m})$) f Armored Shielded Cable			
C23	RTD Input with $24 \mathrm{ft}$. (7.32 m) of Armored Shielded Cable			
C24	RTD Input with 75 ft . $(22.86 \mathrm{~m})$ of Armored Shielded Cable			
C30 ${ }^{(12)}$	RTD Input with 25 in. (64 cm) of ATEX/IECEx Flameproof Cable			
C32	RTD Input with 12 ft . (3.66 m) of ATEX/IECEx Flameproof Cable			

Rosemount 3051S Series

C33	RTD Input with $24 \mathrm{ft}$. (7.32 m) of ATEX/IECEx Flameproof Cable
C34	RTD Input with 75 ft . $(22.86 \mathrm{~m})$ of ATEX/IECEx Flameproof Cable
C40 ${ }^{(12)}$	RTD Input with 34 in . (86.36 cm) Shielded Cable and 24 in (60.96 cm) FM Approved Coupling Flex
$\mathrm{C} 41{ }^{(12)}$	RTD Input with 40 in. (101.60 cm) Shielded Cable and $30 \mathrm{in} .(76.20 \mathrm{~cm})$ FM Approved Coupling Flex
Mounting Brackets ${ }^{(13)}$	
B4	Coplanar flange bracket, all SST, 2-in. pipe and panel
B1	Traditional flange bracket, Carbon Steel, 2-in. pipe
B2	Traditional flange bracket, Carbon Steel, panel
B3	Traditional flange flat bracket, Carbon Steel, 2-in. pipe
B7	Traditional flange bracket, B1 with SST bolts
B8	Traditional flange bracket, B2 with SST bolts
B9	Traditional flange bracket, B3 with SST bolts
BA	Traditional flange bracket, B1, all SST
BC	Traditional flange bracket, B3, all SST
Special Configuration (Software)	
C1	Custom software configuration Note: A Configuration Data Sheet must be completed, see document number 00806-0100-4803.
C2	Custom flow configuration Note: A Custom Fluid Data Sheet must be completed, see document number 00806-0200-4803.
C4	NAMUR alarm and saturation levels, high alarm
C5	NAMUR alarm and saturation levels, low alarm
C6	Custom alarm and saturation signal levels, high alarm
C7	Custom alarm and saturation signal levels, low alarm
C8	Low alarm (standard Rosemount alarm and saturation levels)
Special Configuration (Hardware)	
D2 ${ }^{(13)}$	1/2-14 NPT Process adapters
D9 ${ }^{(13)}$	RC 1/2 process adapters
D4	External ground screw assembly
D5 ${ }^{(13)}$	Delete transmitter drain/vent valves (install plugs)
D7 ${ }^{(13)}$	Coplanar flange without drain/vent ports
D8 ${ }^{(13)}$	Ceramic drain/vent valves
Product Certifications	
E1	ATEX Flameproof
11	ATEX Intrinsic Safety
N1	ATEX Type n
ND	ATEX Dust
K1	ATEX Flameproof, Intrinsic Safety, Type n, Dust (combination of E1, I1, N1, and ND)
E4	TIIS Flameproof
14	TIIS Intrinsic Safety
K4	TIIS Flameproof and Intrinsic Safety (combination E4 and I4)
E5	FM Explosion-proof, Dust Ignition-proof
15	FM Intrinsically Safe, Division 2
K5	FM Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5 and I5)
E6	CSA Explosion-proof, Dust Ignition-proof, Division 2
16	CSA Intrinsically Safe
K6	CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E6 and I6)
D3	Measurement Canada Accuracy Approval
E7	IECEx Flameproof, Dust Ignition-proof
17	IECEx Intrinsic Safety
N7	IECEx Type n
K7	IECEx Flameproof, Dust Ignition-proof, Intrinsic Safety, and Type n (combination of E7, I7, and N7)
E2 ${ }^{(14)}$	INMETRO Flameproof
$12^{(14)}$	INMETRO Intrinsic Safety
$\mathrm{K} 2^{(14)}$	INMETRO Flameproof, Intrinsic Safety (combination of E2 and I2)
$E 3^{(14)}$	China Flameproof
$13{ }^{(14)}$	China Intrinsic Safety
$K A^{(15)}$	ATEX and CSA Explosion-proof, Intrinsically Safe, Division 2 (combination of E1, E6, I1, and I6)
KB	FM and CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5, E6, I5, and I6)
$K C^{(15)}$	FM and ATEX Explosion-proof, Intrinsically Safe, Division 2 (combination of E5, E1, I5, and I1)
$K D^{(15)}$	FM, CSA, and ATEX Explosion-proof, Intrinsically Safe (combination of E5, E6, E1, I5, I6, and I1)
DW ${ }^{(16)}$	NSF Drinking Water Certification

Rosemount 3051S Coplanar Differential, Gage, or Absolute Transmitter

Model	Transmitter Type			
3051S	Coplanar Pressure Transmitter			
Code	Performance Class			
$1^{(1)}$	Ultra: 0.025\% span accuracy, 200:1 rangedown, 10-year stability, 12-year limited warranty			
$3^{(2)}$	Ultra for Flow: 0.04\% reading accuracy, 200:1 rangedown, 10-year stability, 12-year limited warranty			
2	Classic: 0.055\% span accuracy, 100:1 rangedown, 5-year stability			
Code	Connection Type			
C	Coplanar			
Code	Measurement Type ${ }^{(3)}$			
D	Differential			
G	Gage			
A	Absolute			
Code	Pressure Range			
	Differential	Gage		Absolute
$0 A^{(4)}$	-3 to $3 \mathrm{inH}_{2} \mathrm{O}(-7,47$ to $7,47 \mathrm{mbar})$	N/A		0 to 5 psia (0 to $0,34 \mathrm{bar}$)
1A	-25 to $25 \mathrm{inH}_{2} \mathrm{O}$ (-62,2 to 62,2 mbar)	-25 to $25 \mathrm{inH}_{2} \mathrm{O}(-62,2$ to	62,2 mbar)	0 to 30 psia (0 to 2,06 bar)
2A	-250 to $250 \mathrm{inH}_{2} \mathrm{O}(-623$ to 623 mbar$)$	-250 to $250 \mathrm{inH}_{2} \mathrm{O}(-623$ to	$623 \mathrm{mbar})$	0 to 150 psia (0 to 10,34 bar)
3A	-1000 to $1000 \mathrm{inH}_{2} \mathrm{O}(-2,5$ to $2,5 \mathrm{bar})$	-393 to $1000 \mathrm{inH}_{2} \mathrm{O}(-0,98$	to 2,5 bar)	0 to 800 psia (0 to $55,2 \mathrm{bar}$)
4A	-300 to $300 \mathrm{psi}(-20,7$ to 20,7 bar)	-14.2 to $300 \mathrm{psig}(-0,98$ to	21 bar)	0 to 4000 psia (0 to 275,8 bar)
5A	-2000 to 2000 psi (-137,9 to 137,9 bar)	-14.2 to $2000 \mathrm{psig}(-0,98$ to	oo 137,9 bar)	N/A
Code	Isolating Diaphragm			
$2^{(5)}$	316L SST			
$3^{(5)}$	Alloy C-276			
4	Alloy 400			
$5^{(6)}$	Tantalum			
6	Gold-plated Alloy 400 Note: Includes graphite-filled PTFE o-ring.			
7	Gold-plated 316L SST			
Code	Process Connection Size		Material Type ${ }^{(7)}$	
			Flange Material	Drain Vent Bolting
000	None			
A11 ${ }^{(8)}$	Assemble to Rosemount 305 Integral Manifold			
$\mathrm{A} 12^{(8)}$	Assemble to Rosemount 304 or AMF Manifold and SST traditional flange			
$\mathrm{B} 11^{(8)(9)}$	Assemble to one Rosemount 1199 Diaphragm Seal			
$\mathrm{B} 12^{(8)(9)}$	Assemble to two Rosemount 1199 Diaphragm Seals			
C11 ${ }^{(8)}$	Assemble to Rosemount 405 Primary Element			
D11 ${ }^{(8)}$	Assemble to Rosemount 1195 integral orifice and Rosemount 305 Integral Manifold			
EA2 ${ }^{(8)}$	Assemble to Rosemount Annubar Primary Element with Coplanar flange		SST	316 SST
$E A 3^{(8)}$	Assemble to Rosemount Annubar Primary Element with Coplanar flange		Cast C-276	Alloy C-276
EA5 ${ }^{(8)}$	Assemble to Rosemount Annubar Primary Element with Coplanar flange		SST	Alloy C-276
E11	Coplanar flange	1/4-18 NPT	CS	316 SST
E12	Coplanar flange	1/4-18 NPT	SST	316 SST
E13 ${ }^{(5)}$	Coplanar flange	1/4-18 NPT	Cast C-276	Alloy C-276
E14	Coplanar flange	1/4-18 NPT	Cast Alloy 400	Alloy 400/K-500
E15 ${ }^{(5)}$	Coplanar flange	1/4-18 NPT	SST	Alloy C-276
E16 ${ }^{(5)}$	Coplanar flange	1/4-18 NPT	CS	Alloy C-276
E21	Coplanar flange	RC $1 / 4$	CS	316 SST
E22	Coplanar flange	RC $1 / 4$	SST	316 SST
E23 ${ }^{(5)}$	Coplanar flange	RC $1 / 4$	Cast C-276	Alloy C-276
E24	Coplanar flange	RC $1 / 4$	Cast Alloy 400	Alloy 400/K-500
E25 ${ }^{(5)}$	Coplanar flange	RC $1 / 4$	SST	Alloy C-276
E26 ${ }^{(5)}$	Coplanar flange	RC ${ }^{1 / 4}$	CS	Alloy C-276
F12	Traditional flange	1/4-18 NPT	SST	316 SST
F13 ${ }^{(5)}$	Traditional flange	1/4-18 NPT	Cast C-276	Alloy C-276
F14	Traditional flange	1/4-18 NPT	Cast Alloy 400	Alloy 400/K-500

			Flange Material	Drain Vent	Bolting
F15 ${ }^{(5)}$	Traditional flange	1/4-18 NPT	SST	Alloy C-276	
F22	Traditional flange	RC $1 / 4$	SST	316 SST	
F23 ${ }^{(5)}$	Traditional flange	RC $1 / 4$	Cast C-276	Alloy C-276	
F24	Traditional flange	RC $1 / 4$	Cast Alloy 400	Alloy 400/K-500	
F25 ${ }^{(5)}$	Traditional flange	RC $1 / 4$	SST	Alloy C-276	
F32	Bottom vent traditional flange	1/4-18 NPT	SST	316 SST	
F42	Bottom vent traditional flange	RC $1 / 4$	SST	316 SST	
F52	DIN-compliant traditional flange	1/4-18 NPT	SST	316 SST	7/16-in. bolting
F62	DIN-compliant traditional flange	1/4-18 NPT	SST	316 SST	M10 bolting
F72	DIN-compliant traditional flange	1/4-18 NPT	SST	316 SST	M12 bolting
G11	Vertical mount level flange	2-in. ANSI class 150	SST	316 SST	
G12	Vertical mount level flange	2-in. ANSI class 300	SST	316 SST	
G14 ${ }^{(5)}$	Vertical mount level flange	2-in. ANSI class 150	Cast C-276	Alloy C-276	
G15 ${ }^{(5)}$	Vertical mount level flange	$2-\mathrm{in}$. ANSI class 300	Cast C-276	Alloy C-276	
G21	Vertical mount level flange	$3-\mathrm{in}$. ANSI class 150	SST	316 SST	
G22	Vertical mount level flange	$3-\mathrm{in}$. ANSI class 300	SST	316 SST	
G24 ${ }^{(5)}$	Vertical mount level flange	$3-\mathrm{in}$. ANSI class 150	Cast C-276	Alloy C-276	
G25 ${ }^{(5)}$	Vertical mount level flange	$3-\mathrm{in}$. ANSI class 300	Cast C-276	Alloy C-276	
G31	Vertical mount level flange	DIN- DN 50 PN 40	SST	316 SST	
G41	Vertical mount level flange	DIN- DN 80 PN 40	SST	316 SST	
Code	Output ${ }^{(10)}$				
A	4-20 mA with digital signal based	tocol			
$\mathrm{F}^{(11)}$	Foundation fieldbus protocol				
$\mathrm{X}^{(12)}$	Wireless (Requires wireless optio	ss housing 5A)			
Code	Housing Style		Material ${ }^{(7)}$	Conduit Entry Size	
00	None (SuperModule Platform onl	included)			
$01^{(13)}$	Assemble to Rosemount 753R W	nitoring Indicator			
1A	PlantWeb housing		Aluminum	¹/2-14 NPT	
1B	PlantWeb housing		Aluminum	M20 x 1.5 (CM20)	
1 C	PlantWeb housing		Aluminum	$\mathrm{G}^{1 / 2}$	
1 J	PlantWeb housing		SST	¹/2-14 NPT	
1K	PlantWeb housing		SST	M20 x 1.5 (CM20)	
1L	PlantWeb housing		SST	$\mathrm{G}^{1 / 2}$	
5A	Wireless PlantWeb housing		Aluminum	1/2-14 NPT	
5J	Wireless PlantWeb housing		SST	1/2-14 NPT	
2A	Junction Box housing		Aluminum	¹/2-14 NPT	
2B	Junction Box housing		Aluminum	M20 $\times 1.5$ (CM20)	
2 C	Junction Box housing		Aluminum	$\mathrm{G}^{1 / 2}$	
2 J	Junction Box housing		SST	1/2-14 NPT	
2E	Junction Box Housing with outpu	splay and interface	Aluminum	¹/2-14 NPT	
2F	Junction Box Housing with outpu	splay and interface	Aluminum	M20 $\times 1.5$ (CM20)	
2G	Junction Box Housing with outpu	splay and interface	Aluminum	$\mathrm{G}^{1 / 2}$	
2M	Junction Box Housing with outpu	splay and interface	SST	¹/2-14 NPT	
$7 J^{(14)}$	Quick Connect (A size Mini, 4-pin	tion)	SST		
Code	Options				
PlantWeb Control Functionality					
A01 ${ }^{(15)}$	Foundation fieldbus Advanced	B Block Suite			
PlantWeb Diagnostic Functionality					
D01 ${ }^{(15)} \quad$ Foundation fieldbus Diagnostics Suite					
DA1 ${ }^{(16)}$ HART Diagnostics Suite					
PlantWeb Enhanced Measurement Functionality					
H01 ${ }^{(15)(17)}$ Fully Compensated Mass Flow Block					
Code \quad Wireless Options - Select code from each wireless category (example: WA2WK1)					
Wireless Burst Rate					
WA User Configurable Burst Rate					
Operating Frequency and Protocol					
$1 \quad 2.4 \mathrm{GHz} \mathrm{DSSS}$, HART					
2900 MHz FHSS , HART					
3	2.4 GHz DSSS, WirelessHART				

Rosemount 3051S Series

Omnidirectional Wireless Antenna	
WK	Long Range, Integral Antenna
SmartPower ${ }^{\text {TM }}$	
1	Long-life Power Module Adapter, Intrinsically Safe NOTE: Long-life Power Module must be shipped separately, order Part No. 00753-9220-0001.
Code	Options
Mounting Brackets ${ }^{(18)}$	
B4	Coplanar flange bracket, all SST, 2-in. pipe and panel
B1	Traditional flange bracket, CS, 2-in. pipe
B2	Traditional flange bracket, CS, panel
B3	Traditional flange flat bracket, CS, 2-in. pipe
B7	Traditional flange bracket, B1 with SST bolts
B8	Traditional flange bracket, B2 with SST bolts
B9	Traditional flange bracket, B3 with SST bolts
BA	Traditional flange bracket, B1, all SST
BC	Traditional flange bracket, B3, all SST
Special Configuration (Software)	
C1 ${ }^{(19)}$	Custom software configuration Note: A Configuration Data Sheet must be completed, see document number 00806-0100-4801 for HART and 00806-0100-4802 for wireless.
C2	Custom flow configuration Note: Requires option code H01. A Configuration Data Sheet must be completed, see document number 00806-0100-4801.
C3	Gage pressure calibration on Rosemount 3051S_CA4 only
$\mathrm{C} 4{ }^{(19)(20)}$	NAMUR alarm and saturation levels, high alarm
C5 ${ }^{(19)(20)}$	NAMUR alarm and saturation levels, low alarm
C6 ${ }^{(19)(20)}$	Custom alarm and saturation signal levels, high alarm Note: Requires option code C1, custom software configuration. A Configuration Data Sheet must be completed, see page 61.
C7 ${ }^{(19)(20)}$	Custom alarm and saturation signal levels, low alarm Note: Requires option code C1, custom software configuration. A Configuration Data Sheet must be completed, see page 61.
$\mathrm{C} 8{ }^{(19)(20)}$	Low alarm (standard Rosemount alarm and saturation levels)
Special Configuration (Hardware)	
D1 ${ }^{(19)(20)}$	Hardware adjustments (zero, span, alarm, security) Note: Not available with housing style codes $00,01,2 \mathrm{E}, 2 \mathrm{~F}, 2 \mathrm{G}, 2 \mathrm{M}, 5 \mathrm{~A}$, or 7 J .
D2 ${ }^{(18)}$	1/2-14 NPT Process adapters
D4	External ground screw assembly
D5 ${ }^{(18)}$	Delete transmitter drain/vent valves (install plugs)
D7 ${ }^{(18)}$	Coplanar flange without drain/vent ports
D88 ${ }^{(18)}$	Ceramic drain/vent valves
$\mathrm{D} 9^{(18)}$	RC $1 / 2$ process adapters
Product Certifications ${ }^{(21)}$	
E1	ATEX Flameproof
11	ATEX Intrinsic Safety
IA	ATEX FISCO Intrinsic Safety; for Foundation fieldbus protocol only
N1	ATEX Type n
K1	ATEX Flameproof, Intrinsic Safety, Type n, Dust (combination of E1, I1, N1, and ND)
ND	ATEX Dust
E4	TIIS Flameproof
E5	FM Explosion-proof, Dust Ignition-proof
15	FM Intrinsically Safe, Division 2
IE	FM FISCO Intrinsically Safe; for Foundation fieldbus protocol only
K5	FM Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5 and I5)
E6	CSA Explosion-proof, Dust Ignition-proof, Division 2
16	CSA Intrinsically Safe
IF	CSA FISCO Intrinsically Safe; for Foundation fieldbus protocol only
K6	CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E6 and I6)
D3 ${ }^{(22)}$	Measurement Canada Accuracy Approval
E7	IECEx Flameproof, Dust Ignition-proof
17	IECEx Intrinsic Safety
IG	IECEx FISCO Intrinsic Safety; for Foundation fieldbus protocol only
N7	IECEx Type n
K7	IECEx Flameproof, Dust Ignition-proof, Intrinsic Safety, Type n (combination of E7, I7, and N7)

E2	INMETRO Flameproof
12	INMETRO Intrinsic Safety
K2	INMETRO Flameproof, Intrinsic Safety
E3 ${ }^{(23)}$	China Flameproof
$13{ }^{(23)}$	China Intrinsic Safety
KA	ATEX and CSA Flameproof, Intrinsically Safe, Division 2 (combination of E1, E6, I1, and I6) Note: Only available on Housing Style codes 00, IA, IJ, 2A, 2J, 2E, or $2 M$.
KB	FM and CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5, E6, I5, and I6) Note: Only available on Housing Style codes 00, IA, IJ, 2A, 2J, 2E, or 2M.
KC	FM and ATEX Explosion-proof, Intrinsically Safe, Division 2 (combination of E5, E1, I5, and I1) Note: Only available on Housing Style codes 00, IA, IJ, 2A, 2J, 2E, or 2M.
KD	FM, CSA, and ATEX Explosion-proof, Intrinsically Safe (combination of E5, E6, E1, I5, I6, and I1) Note: Only available on Housing Style codes 00, IA, IJ, 2A, 2J, 2E, or 2M.
DW ${ }^{(24)}$	NSF Drinking Water Approval
Alternate Materials of Construction	
L1	Inert sensor fill fluid (differential and gage only) Note: Silicone fill fluid is standard.
L2	Graphite-filled PTFE o-ring
L4 ${ }^{(18)}$	Austenitic 316 SST bolts
L5 ${ }^{(5)(18)}$	ASTM A193, Grade B7M bolts
L6 ${ }^{(18)}$	Alloy K-500 bolts
L7 ${ }^{(5)(18)}$	ASTM A453, Class D, Grade 660 bolts
L8 ${ }^{(18)}$	ASTM A193, Class 2, Grade B8M bolts
Digital Display ${ }^{(25)}$	
M5	PlantWeb LCD Display
$\mathrm{M} 7{ }^{(20)(26)}$	Remote mount LCD display and interface, no cable; PlantWeb housing, SST bracket, requires 4-20 mA / HART output Note: See the 3051S Reference Manual (document number 00809-0100-4801) for cable requirements. Contact an Emerson Process Management representative for additional information.
$\mathrm{M} 8^{(20)(26)(27)}$	Remote mount LCD display and interface, $50 \mathrm{ft}$. (15 m) cable; PlantWeb housing, SST bracket, requires 4-20 mA / HART output
$\mathrm{M} 9^{(20)(26)(27)}$	Remote mount LCD display and interface, 100 ft . (31 m) cable; PlantWeb housing, SST bracket, requires 4-20 mA / HART output
Special Procedures	
$\mathrm{P} 1{ }^{(28)}$	Hydrostatic testing with certificate
$\mathrm{P} 2{ }^{(18)}$	Cleaning for special services
$\mathrm{P} 3{ }^{(18)}$	Cleaning for less than 1PPM chlorine/fluorine
P9	4500 psig (310 bar) static pressure limit (Rosemount 3051S_CD only)
$\mathrm{P} 0^{(29)}$	6092 psig (420 bar) static pressure limit (Rosemount 3051S2CD only)
Special Certifications	
Q4	Calibration certificate
QP	Calibration certificate and tamper evident seal
Q8	Material traceability certification per EN 10204 3.1.B
QS ${ }^{(19)(20)}$	Prior-use certificate of FMEDA Data
$Q T^{(30)}$	Safety-certified to IEC 61508 with certificate of FMEDA data
Q16	Surface finish certification for sanitary remote seals
QZ	Remote Seal System Performance Calculation Report
Terminal Blocks	
$\mathrm{T} 1^{(31)}$	Transient terminal block
$\mathrm{T} 2{ }^{(32)}$	Terminal block with WAGO ${ }^{\circledR}$ spring clamp terminals
T3 ${ }^{(32)}$	Transient terminal block with WAGO spring clamp terminals
Conduit Electrical Connector	
GE ${ }^{(33)}$	M12, 4-pin, Male Connector (eurofast ${ }^{\circledR}$)
GM ${ }^{(33)}$	A size Mini, 4-pin, Male Connector (minifast ${ }^{(8)}$)
Typical Model Number: 3051S1CD 2A 2 E12 A 1A DA1 B4 M5	

(1) Not available with Wireless Operating Frequency and Protocol option codes 1 or 2.
(2) Not available with Wireless Operating Frequency and Protocol option codes 1 or 2 or Housing code 01. This option is only available with range codes 2 A and 3A, 316L SST or Alloy C-276 isolating diaphragm and silicone fill fluid.
(3) Performance Class code 3 is available with Measurement Type code D only.
(4) 3051S_CD0 is only available with traditional flange, 316L SST diaphragm material, and Bolting option L4.

Rosemount 3051S Series

(5) Materials of Construction comply with metallurgical requirements highlighted within NACE MR0175/ISO 15156 for sour oil field production environments. Environmental limits apply to certain materials. Consult latest standard for details. Selected materials also conform to NACE MR0103 for sour refining environments.
(6) Tantalum diaphragm material is only available for ranges $2 A-5 A$, differential and gage.
(7) Material specified is cast as follows: CF-8M is the cast version of 316 SST, CF-3M is the cast version of 316L SST, CW-12MW is the cast version of Alloy C-276, M-30C is the cast version of Alloy 400. For housing, material is aluminum with polyurethane paint.
(8) "Assemble to" items are specified separately and require a completed model number. Process connection option codes B12, C11, D11, EA2, EA3, and EA5 are only available on differential Measurement Type, code D.
(9) Consult an Emerson Process Management representative for performance specifications.
(10) For spare SuperModule Platforms, select output code A.
(11) Requires PlantWeb housing.
(12) Available approvals are FM Intrinsically Safe, Division 2 (option code 15), CSA Intrinsically Safe (option code I6), ATEX Intrinsic Safety (option code 11; only available with 2.4 GHz), and IECEx Intrinsic Safety (option code I7; only available with 2.4 GHz).
(13) Available with output code A only. Not available with approvals. See Rosemount 753R Product Data Sheet, 00813-0100-4379, to specify Web-Based Monitoring Indicator. Does not integrate into plant host systems.
(14) Available with output code A only. Available approvals are FM Intrinsically Safe, Division 2 (option code I5), ATEX Intrinsic Safety (option code I1), or IECEx Intrinsic Safety (option code 17). Contact an Emerson Process Management representative for additional information.
(15) Requires PlantWeb housing and output code F.
(16) Requires PlantWeb housing and output code A. Includes Hardware Adjustments as standard. Not available with option code QT.
(17) Requires Rosemount Engineering Assistant to configure.
(18) Not available with process connection option code A11.
(19) Not available with output code F or Housing code 01.
(20) Not available with output code X.
(21) Valid when SuperModule Platform and housing have equivalent approvals.
(22) Requires PlantWeb housing and Hardware Adjustments option code D1. Limited availability depending on transmitter type and range. Contact an Emerson Process Management representative for additional information.
(23) Contact an Emerson Process Management representative for availability.
(24) Requires 316L SST diaphragm material, glass-filled PTFE O-ring (standard), and Process Connection code E12 or F12.
(25) Not available with Housing code 01 or 7 J.
(26) Not available with output code F, Housing code 01, option code DA1, or option code QT.
(27) Cable supplied is Belden 3084A, rated for ambient temperatures up to $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$.
(28) P1 is not available with 3051S_CAO.
(29) Requires 316 LSST or Alloy C-276 diaphragm material, assemble to Rosemount 305 integral manifold or DIN-compliant traditional flange process connection, and bolting option L8. Limited to Pressure Range (Differential), ranges $2 A-5 A$.
(30) Not available with output code F or X. Not available with housing code 01 or 7 J .
(31) Not available with Housing code 00, 01, 5A, or 7 J .
(32) Available with output code A and PlantWeb housing only.
(33) Not available with Housing code 00, 01, 5A, or 7J. Available with Intrinsically Safe approvals only. For FM Intrinsically Safe, Division 2 (option code 15) or FM FISCO Intrinsically Safe (option code IE), install in accordance with Rosemount drawing 03151-1009 to maintain outdoor rating (NEMA 4X and IP66).

Rosemount 3051S In-Line Gage or Absolute Transmitter

Model	Transmitter Type		
3051S	In-Line Pressure Transmitter		
Code	Performance Class		
$1^{(1)}$	Ultra: 0.025\% span accuracy, 200:1 rangedown, 10-year stability, 12-year limited warranty		
2	Classic: 0.055\% span accuracy, 100:1 rangedown, 5-year stability		
Code	Device Type		
T	In-Line		
Code	Measurement Type		
G	Gage		
A	Absolute		
Code	Pressure Range		
	TG	TA	
1A	-14.7 to $30 \mathrm{psi}(-1,0$ to $2,1 \mathrm{bar})$	0 to 30 psia	
2A	-14.7 to $150 \mathrm{psi}(-1,0$ to 10,3 bar)	0 to 150 psia	
3A	-14.7 to $800 \mathrm{psi}(-1,0$ to 55 bar$)$	0 to 800 psia	
4A	-14.7 to 4000 psi (-1,0 to 276 bar)	0 to 4000 ps	
5A	-14.7 to 10000 psi (-1,0 to 689 bar)	0 to 10000 p	
Code	Isolating Diaphragm / Process Connection Material		
$2^{(2)}$	316L SST		
$3^{(2)}$	Alloy C-276		
Code	Process Connection Style		
A11 ${ }^{(3)}$	Assemble to Rosemount 306 integral manifold		
B11 ${ }^{(3)(4)}$	Assemble to one Rosemount 1199 diaphragm seal		
E11	1/2-14 NPT female		
F11	Non-threaded instrument-flange (1-flange) (Range 1-4 only)		
G11	G1/2 A DIN 16288 male (Range 1-4 only)		
H11	Coned and threaded, compatible with autoclave type F-250-C (Range 5A only)		
Code	Output ${ }^{(5)}$		
A	4-20 mA with digital signal based on HART protocol		
$\mathrm{F}^{(6)}$	Foundation fieldbus protocol		
$\mathrm{X}^{(7)}$	Wireless (Requires wireless options and wireless housing 5A)		
Code	Housing Style	Materials ${ }^{(8)}$	Conduit Entry Size
00	None (SuperModule Platform only, no housing included)		
$01^{(9)}$	Assemble to Rosemount 753R Web-Based Monitoring Indicator		
1A	PlantWeb housing	Aluminum	¹/2-14 NPT
1B	PlantWeb housing	Aluminum	M20 x 1.5 (CM20)
1 C	PlantWeb housing	Aluminum	$\mathrm{G}^{1 / 2}$
1 J	PlantWeb housing	SST	1/2-14 NPT
1K	PlantWeb housing	SST	M20 x 1.5 (CM20)
1L	PlantWeb housing	SST	G ${ }^{1 / 2}$
5A	Wireless PlantWeb housing	Aluminum	1/2-14 NPT
5J	Wireless PlantWeb housing	SST	1/2-14 NPT
2A	Junction Box housing	Aluminum	¹/2-14 NPT
2B	Junction Box housing	Aluminum	M20 x 1.5 (CM20)
2 C	Junction Box housing	Aluminum	G 1/2
2 J	Junction Box housing	SST	1/2-14 NPT
2E	Junction Box housing with output for remote interface	Aluminum	1/2-14 NPT
2F	Junction Box housing with output for remote interface	Aluminum	M20 x 1.5 (CM20)
2G	Junction Box housing with output for remote interface	Aluminum	$\mathrm{G}^{1 / 2}$
2M	Junction Box housing with output for remote interface	SST	1/2-14 NPT
$7 J^{(10)}$	Quick Connect (A size Mini, 4-pin male termination)	SST	

Code	Options
PlantWeb Control Functionality	
A01 ${ }^{(11)}$	Foundation fieldbus Advanced Control Function Block Suite
PlantWeb Diagnostic Functionality	
D01 ${ }^{(11)}$	Foundation fieldbus Diagnostics Suite
DA1 ${ }^{(12)}$	HART Diagnostics Suite
Code	Wireless Options - Select code from each wireless category (example: WA2WK1)
Wireless Burst Rate	
	User Configurable Burst Rate
Operating Frequency and Protocol	
1	2.4 GHz DSSS, HART
2	$900 \mathrm{MHz} \mathrm{FHSS}$,
3	2.4 GHz DSSS, WirelessHART
Omnidirectional Wireless Antenna	
	Long Range, Integral Antenna
SmartPower ${ }^{\text {TM }}$	
1	Long-life Power Module Adapter, Intrinsically Safe NOTE: Long-life Power Module must be shipped separately, order Part No. 00753-9220-0001.
Code	Options
Mounting Bracket	
B4	Bracket, all SST, 2-in. pipe and panel
Special Configuration (Software) ${ }^{(13)}$	
$\mathrm{C} 1^{(13)(14)}$	Custom software configuration Note: A Configuration Data Sheet must be completed, see document number 00806-0100-4801 for HART and 00806-0100-4802 for wireless.
$\mathrm{C} 4{ }^{(13)(14)}$	NAMUR alarm and saturation values, high alarm
C5 ${ }^{(13)(14)}$	NAMUR alarm and saturation values, low alarm
$\mathrm{C} 6^{(13)(14)}$	Custom alarm and saturation signal levels, high alarm Note: Requires option code C1, custom software configuration. A Configuration Data Sheet must be completed, see page 61.
$C 7^{(13)(14)}$	Custom alarm and saturation signal levels, low alarm Note: Requires option code C1, custom software configuration. A Configuration Data Sheet must be completed, see page 61.
$\mathrm{C} 8^{(13)(14)}$	Low alarm (Standard Rosemount alarm and saturation signal levels)
Special Configuration (Hardware)	
D1 ${ }^{(13)(14)}$	Hardware adjustments (zero, span, alarm, security) Note: Not available with Housing Style codes 00, 01, 2E, 2F, 2G, 2M, 5A, or 7J.
D4	External ground screw assembly
Product Certifications ${ }^{(15)}$	
E1	ATEX Flameproof
11	ATEX Intrinsic Safety
IA	ATEX FISCO Intrinsic Safety; for Foundation fieldbus protocol only
N1	ATEX Type n
K1	ATEX Flameproof, Intrinsic Safety, Type n, Dust (combination of E1, I1, N1, and ND)
ND	ATEX Dust
E4	TIIS Flameproof
E5	FM Explosion-proof, Dust Ignition-proof
15	FM Intrinsically Safe, Division 2
IE	FM FISCO Intrinsically Safe; for Foundation fieldbus protocol only
K5	FM Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5 and I5)
E6	CSA Explosion-proof, Dust Ignition-proof, Division 2
16	CSA Intrinsically Safe
IF	CSA FISCO Intrinsically Safe; for Foundation fieldbus protocol only
K6	CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E6 and I6)
D3 ${ }^{(16)}$	Measurement Canada Accuracy Approval
E7	IECEx Flameproof, Dust Ignition-proof
17	IECEx Intrinsic Safety
IG	IECEx FISCO Intrinsic Safety; for Foundation fieldbus protocol only
N7	IECEx Type n
K7	IECEx Flameproof, Dust Ignition-proof, Intrinsic Safety, Type n (combination of E7, I7, and N7)
E2	INMETRO Flameproof
12	INMETRO Intrinsic Safety

K2	INMETRO Flameproof, Intrinsic Safety
E3 ${ }^{(17)}$	China Flameproof
$13^{(17)}$	China Intrinsic Safety
KA	ATEX and CSA Flameproof, Intrinsically Safe, Division 2 (combination of E1, E6, I1, and I6) Note: Only available on Housing Style codes 00, IA, IJ, 2A, 2J, 2E, or 2M.
KB	FM and CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5, E6, I5, and I6) Note: Only available on Housing Style codes 00, IA, IJ, 2A, 2J, 2E, or 2M.
KC	FM and ATEX Explosion-proof, Intrinsically Safe, Division 2 (combination of E5, E1, I5, and I1) Note: Only available on Housing Style codes 00, IA, IJ, 2A, 2J, 2E, or 2M.
KD	FM, CSA, and ATEX Explosion-proof, Intrinsically Safe (combination of E5, E6, E1, I5, I6, and I1) Note: Only available on Housing Style codes 00, IA, IJ, 2A, 2J, 2E, or 2M.
DW ${ }^{(18)}$	NSF Drinking Water Approval
Alternate Materials of Construction	
L1	Inert sensor fill fluid Note: Silicone fill fluid is standard.
Digital Displa	
M5	PlantWeb LCD Display
$M 7^{(14)(20)}$	Remote mount LCD display and interface, no cable; PlantWeb housing, SST bracket, requires 4-20 mA / HART output Note: See the 3051S Reference Manual (document number 00809-0100-4801) for cable requirements. Contact an Emerson Process Management representative for additional information.
$\mathrm{M} 8^{(14)(20)(21)}$	Remote mount LCD display and interface, 50 ft . 15 m) cable; PlantWeb housing, SST bracket, requires 4-20 mA / HART output
$\mathrm{M} 9^{(14)(20)(21)}$	Remote mount LCD display and interface, 100 ft . 31 m) cable; PlantWeb housing, SST bracket, requires 4-20 mA / HART output
Special Procedures	
P1	Hydrostatic testing with certificate
$\mathrm{P} 2^{(22)}$	Cleaning for special services
$\mathrm{P} 3^{(22)}$	Cleaning for less than 1 PPM chlorine/fluorine
Special Certifications	
Q4	Calibration certificate
QP	Calibration certificate and tamper evident seal
Q8	Material traceability certification per EN 10204 3.1.B
QS ${ }^{(13)(14)}$	Prior-use certificate of FMEDA Data
$Q T^{(23)}$	Safety-certified to IEC 61508 with certificate of FMEDA data
Q16	Surface finish certification for sanitary remote seals
QZ	Remote Seal System Performance Calculation Report
Terminal Blocks	
$\mathrm{T} 1^{(24)}$	Transient terminal block
T2 ${ }^{(25)}$	Terminal block with WAGO ${ }^{\circledR}$ spring clamp terminals
T3 ${ }^{(25)}$	Transient terminal block with WAGO spring clamp terminals
Conduit Electrical Connector	
GE ${ }^{(26)}$	M12, 4-pin, Male Connector (eurofast ${ }^{\circledR}$)
GM ${ }^{(26)}$	A size Mini, 4-pin, Male Connector (minifast ${ }^{\text {® }}$)
Typical Model Number: 3051S1TG 2A 2 E11 A 1A DA1 B4 M5	

(1) Not available with Wireless Operating Frequency and Protocol option codes 1 or 2.
(2) Materials of Construction comply with metallurgical requirements highlighted within NACE MR0175/ISO 15156 for sour oil field production environments. Environmental limits apply to certain materials. Consult latest standard for details. Selected materials also conform to NACE MR0103 for sour refining environments.
(3) "Assemble to" items are specified separately and require a completed model number.
(4) Contact an Emerson Process Management representative for performance specifications.
(5) For spare SuperModule Platforms, select output code A.
(6) Requires PlantWeb housing.
(7) Available approvals are FM Intrinsically Safe, Division 2 (option code I5), CSA Intrinsically Safe (option code I6), ATEX Intrinsic Safety (option code I1; only available with 2.4 GHz), and IECEx Intrinsic Safety (option code I7; only available with 2.4 GHz).
(8) Material specified is cast as follows: CF-3M is the cast version of 316L SST. For housing, material is aluminum with polyurethane paint.
(9) Available with output code A only. Not available with approvals. See Rosemount 753R Product Data Sheet, 00813-0100-4379, to specify Web-Based Monitoring Indicator. Does not integrate into plant host systems.
(10) Available with output code A only. Available approvals are FM Intrinsically Safe, Division 2 (option code I5), ATEX Intrinsic Safety (option code I1), or IECEx Intrinsic Safety (option code 17). Contact an Emerson Process Management representative for additional information.
(11) Requires PlantWeb housing and output code F.
(12) Requires PlantWeb housing and output code A. Includes Hardware Adjustments as standard. Not available with option code QT.
(13) Not available with output code F or Housing code 01.
(14) Not available with output code X.
(15) Valid when SuperModule Platform and housing have equivalent approvals.
(16) Requires PlantWeb housing and Hardware Adjustments option code D1. Limited availability depending on transmitter type and range. Contact an Emerson Process Management representative for additional information.
(17) Contact an Emerson Process Management representative for availability.
(18) Requires 316L SST diaphragm material and Process Connection code E11 or G11.
(19) Not available with Housing code 01 and 7 J .
(20) Not available with output code F, Housing code 01, option code DA1, or option code QT.
(21) Cable supplied is Belden 3084A, rated for ambient temperatures up to $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$.
(22) Not available with process connection option code A11.
(23) Not available with output code F or X. Not available with housing code 01 or 7 J .
(24) Not available with Housing code 00, 01, 5A, or 7 J .
(25) Available with output code A and PlantWeb housing only.
(26) Not available with Housing code 00, 01, 5A, or 7J. Available with Intrinsically Safe approvals only. For FM Intrinsically Safe, Division 2 (option code I5) or FM FISCO Intrinsically Safe (option code IE), install in accordance with Rosemount drawing 03151-1009 to maintain outdoor rating (NEMA 4X and IP66).

Rosemount 3051S Series

Rosemount 3051S Liquid Level Transmitter

Select either FF diaphragm seal type (see "Flush Flanged Seal" on page 53) or for EF diaphragm seal type (see "Extended Flanged Seal" on page 54) and then finish this selection by choosing transmitter options.

Model	Transmitter Type	
3051S	Liquid Level Transmitter	
Code	Performance Class	
$1{ }^{(1)}$	Ultra: 0.065\% span accuracy, 100:1 rangedown, 12-year limited warranty	
2	Classic: 0.065\% span accuracy, 100:1 rangedown	
Code	Connection Type	
L	Level	
Code	Measurement Type	
D	Differential	
G	Gage	
A	Absolute	
Code	Pressure Range	
	Differential (LD) Gage (LG)	Absolute (LA)
1A	-25 to $25 \mathrm{inH}_{2} \mathrm{O}(-62,2$ to $62,2 \mathrm{mbar}) \quad-25$ to $25 \mathrm{inH}_{2} \mathrm{O}(-62,2$ to $62,2 \mathrm{mbar})$	0 to 30 psia (2,1 bar)
2A	-250 to $250 \mathrm{inH}_{2} \mathrm{O}(-623$ to 623 mbar$) \quad-250$ to $250 \mathrm{inH}_{2} \mathrm{O}(-623$ to 623 mbar$)$	0 to 150 psia (10 bar)
3A	-1000 to $1000 \mathrm{inH}_{2} \mathrm{O}\left(-2,5\right.$ to 2,5 bar) $\quad-393$ to $1000 \mathrm{inH}_{2} \mathrm{O}(-0,98$ to 2,5 bar)	0 to 800 psia (55 bar)
4A	-300 to 300 psi (-20,7 to 20,7 bar) -14.2 to $300 \mathrm{psig}(-0,98$ to 21 bar)	0 to 4000 psia (276 bar)
5A	-2000 to 2000 psi (-137,9 to 137,9 bar) -14.2 to $2000 \mathrm{psig}(-0,98$ to 137,9 bar)	N/A
Code	Output ${ }^{(2)}$	
A	4-20 mA with digital signal based on HART protocol	
$F^{(3)}$	Foundation fieldbus protocol	
$X^{(4)}$	Wireless (Requires wireless options and wireless housing 5A)	
Code	Housing Style Material ${ }^{(5)}$	Conduit Entry
00	None (SuperModule Platform only, no housing included)	
$01^{(6)}$	Assemble to Rosemount 753R Web-Based Monitoring Indicator	
1A	PlantWeb housing Aluminum	¹⁄2-14 NPT
1B	PlantWeb housing Aluminum	M20 x 1.5 (CM20)
1C	PlantWeb housing Aluminum	$\mathrm{G}^{1 / 2}$
1 J	PlantWeb housing SST	¹/2-14 NPT
1K	PlantWeb housing SST	M20 x 1.5 (CM20)
1L	PlantWeb housing SST	$\mathrm{G}^{1 / 2}$
5A	Wireless PlantWeb housing Aluminum	1/2-14 NPT
5J	Wireless PlantWeb housing SST	1/2-14 NPT
2A	Junction Box housing Aluminum	½-14 NPT
2B	Junction Box housing Aluminum	M20 x 1.5 (CM20)
2C	Junction Box housing Aluminum	$\mathrm{G}^{1 / 2}$
2 J	Junction Box housing SST	1/2-14 NPT
2E	Junction Box with output for remote interface Aluminum	½-14 NPT
2F	Junction Box with output for remote interface Aluminum	M20 x 1.5 (CM20)
2G	Junction Box with output for remote interface Aluminum	$\mathrm{G}^{1 / 2}$
2M	Junction Box with output for remote interface SST	½-14 NPT
$7 J^{(7)}$	Quick Connect (A size Mini, 4-pin male termination) SST	
Code	Seal System Type	
1	Direct-mount diaphragm seal system	
Code	High Pressure Side Extension (between transmitter flange and seal)	
0	Direct-mount (No extension)	
Code	Low Pressure Side Connection (sensor module)	
1	One capillary connection remote diaphragm seal (see Rosemount 1199 ordering table for seal information)	
2	316L SST isolator / SST transmitter flange	
3	Alloy C-276 isolator / SST transmitter flange	
Code	Capillary Length	
0	N/A	
Code	Diaphragm Seal Fill Fluid	
A	Syltherm XLT	
C	D. C. Silicone 704	
D	D. C. Silicone 200	
H	Inert (Halocarbon)	
G	Glycerine and Water	
N	Neobee M-20	
P	Propylene Glycol and Water	

Rosemount 3051S Series

Seal Options (page 53-54)

Flush Flanged Seal

Continue with transmitter options on page 54

(1) Not available with Wireless Operating Frequency and Protocol option codes 1 or 2.
(2) For spare SuperModule Platforms, select output code A.
(3) Requires PlantWeb housing.
(4) Available approvals are FM Intrinsically Safe, Division 2 (option code I5), CSA Intrinsically Safe (option code I6), ATEX Intrinsic Safety (option code I1; only available with 2.4 GHz), and IECEx Intrinsic Safety (option code I7; only available with 2.4 GHz).
(5) Material specified is cast as follows: CF-3M is the cast version of 316L SST. For housing, material is aluminum with polyurethane paint.
(6) Available with output code A only. Not available with approvals. See Rosemount 753R Product Data Sheet, 00813-0100-4379, to specify Web-Based Monitoring Indicator. Does not integrate into plant host systems.
(7) Available with output code A only. Available approvals are FM Intrinsically Safe, Division 2 (option code 15), ATEX Intrinsic Safety (option code I1), or IECEx Intrinsic Safety (option code 17). Contact an Emerson Process Management representative for additional information.
(8) Not recommended for use with spiral wound metallic gaskets (see 1199 product data sheet, document 00813-0100-4016 for additional options).
(9) Standard gasket for lower housing consists of non-asbestos fiber.
(10) Materials of Construction comply with metallurgical requirements highlighted within NACE MR0175/ISO 15156 for sour oil field production environments. Environmental limits apply to certain materials. Consult latest standard for details. Selected materials also conform to NACE MR0103 for sour refining environments.

Rosemount 3051S Series

Extended Flanged Seal

Code	Process Connection Style	
EF	Extended flanged, Ra 125-250 gasket surface	
Code	Diaphragm Seal Size (High Side)	
7	3-in./DN 80, 2.58-in. diaphragm	
9	4-in./DN 100, 3.5-in. diaphragm	
Code	Flange Rating (High Side)	
1	Class 150	
2	Class 300	
4	Class 600	
G	PN 40	Flange Material (High Side)
E	PN 10/16; available with 4 in. DN 100 only	CS
Code	Isolator Material and Extension Material	SST
CA	316L SST	CS
DA	316L SST	SST
CB	Alloy C-276 / Cast C-276	
DB	Alloy C-276 / Cast C-276	
Code	Extension Length (High Side, 1st Position)	
2	2-in./50 mm	
4	4-in./100 mm	
6	6-in./150 mm	
Eode	Extension Length (High Side, 2nd Position)	
0	0-in./0 mm	Continue with transmitter options below

Transmitter Options continued from page 52

Product Data Sheet

Rosemount 3051S Series

M9 ${ }^{(4)(10)(11)}$ Remote mount LCD display and interface, 100 ft . (31 m) cable; PlantWeb housing, SST bracket, requires 4-20 mA / HART output Special Procedures

(1) Requires PlantWeb housing and output code F.
(2) Requires PlantWeb housing and output code A. Includes Hardware Adjustments as standard. Not available with option code QT.
(3) Not available with output code F or Housing code 01.
(4) Not available with output code X.
(5) Valid when SuperModule Platform and housing have equivalent approvals.
(6) Requires PlantWeb housing and Hardware Adjustments option code D1. Limited availability depending on transmitter type and range. Contact an Emerson Process Management representative for additional information.
(7) Contact an Emerson Process Management representative for availability.
(8) Materials of Construction comply with metallurgical requirements highlighted within NACE MR0175/ISO 15156 for sour oil field production environments. Environmental limits apply to certain materials. Consult latest standard for details. Selected materials also conform to NACE MR0103 for sour refining environments.
(9) Not available with Housing Code 01 or 7 J .
(10) Not available with output code F, Housing code 01, option code DA1, or option code QT.
(11) Cable supplied is Belden 3084A, rated for ambient temperatures up to $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$.
(12) Not available with output code F or X. Not available with housing code 01 or 7 J .
(13) Not available with Housing code 00, 01, 5A, or 7 J .
(14) Available with output code A and PlantWeb housing only.
(15) Not available with Housing code 00, 01, 5A, or 7J. Available with Intrinsically Safe approvals only. For FM Intrinsically Safe, Division 2 (option code I5) or FM FISCO Intrinsically Safe (option code IE), install in accordance with Rosemount drawing 03151-1009 to maintain outdoor rating (NEMA 4X and IP66).

Rosemount 300S MultiVariable Transmitter Housing Kit

Model	
300SMV Housing Kit for Rosemount 3051S MultiVariable Transmitter	
Code	MultiVariable Type
M	MultiVariable Measurement with Fully Compensated Mass and Energy Flow
P	MultiVariable Measurement with Direct Process Variable Output
Code	Temperature Input
N	None
$\mathrm{R}^{(1)}$	RTD Input (Type Pt 100, -328 to $1562{ }^{\circ} \mathrm{F}\left(-200\right.$ to $\left.850{ }^{\circ} \mathrm{C}\right)$)
Code	Transmitter Output
A	$4-20 \mathrm{~mA}$ with digital signal based on HART protocol
Code	Housing Style Material ${ }^{(2)}$ Conduit Entry
1A	PlantWeb housing Aluminum ${ }^{1 / 2-14 ~ N P T}$
1B	PlantWeb housing Aluminum M20 1.5 (CM20)
1 C	PlantWeb housing Aluminum $\mathrm{G}^{1 / 2}$
1 J	PlantWeb housing SST 1/2-14 NPT
1K	PlantWeb housing SST M20 1.5 (CM20)
1L	PlantWeb housing SST G ${ }^{1 / 2}$
Code	Options
RTD Cable (RTD Sensor must be ordered separately)	
C12	RTD Input with 12 ft . (3.66 m) of Shielded Cable
C13	RTD Input with 24 ft . (7.32 m) of Shielded Cable
C14	RTD Input with 75 ft . 22.86 m) of Shielded Cable
C20 ${ }^{(3)}$	RTD Input with 27 in . (69 cm) of Armored Shielded Cable
C21	RTD Input with 4 ft . (1.22 m) of Armored Shielded Cable
C22	RTD Input with 12 ft . (3.66 m) of Armored Shielded Cable
C23	RTD Input with 24 ft . (7.32 m) of Armored Shielded Cable
C24	RTD Input with 75 ft . 22.86 m) of Armored Shielded Cable
C30 ${ }^{(3)}$	RTD Input with 25 in . (64 cm) of ATEX/IECEx Flameproof Cable
C32	RTD Input with $12 \mathrm{ft}.(3.66 \mathrm{~m}$) of ATEX/IECEx Flameproof Cable
C33	RTD Input with $24 \mathrm{ft}.(7.32 \mathrm{~m}$) of ATEXIIECEx Flameproof Cable
C34	RTD Input with 75 ft . $(22.86 \mathrm{~m}$) of ATEXIIECEx Flameproof Cable
$\mathrm{C} 40^{(3)}$	RTD Input with 34 in . (86.36 cm) Shielded Cable and 24 in . (60.96 cm) FM Approved Coupling Flex
C41 ${ }^{(3)}$	RTD Input with 40 in . (101.60 cm) Shielded Cable and 30 in . 76.20 cm) FM Approved Coupling Flex
Software Configuration	
$\mathrm{C} 1{ }^{(4)}$	Custom software configuration Note: A Configuration Data Sheet must be completed, see document number 00806-0100-4803.
$\mathrm{C} 2{ }^{(4)}$	Custom flow configuration Note: A Custom Fluid Data Sheet must be completed, see document number 00806-0200-4803.
Alarm Limit	
C4	NAMUR alarm and saturation levels, high alarm
C5	NAMUR alarm and saturation levels, low alarm
C6 ${ }^{(4)}$	Custom alarm and saturation signal levels, high alarm
$\mathrm{C7}{ }^{(4)}$	Custom alarm and saturation signal levels, low alarm
C8	Low alarm (standard Rosemount alarm and saturation levels)
External Ground Screw Assembly	
D4	External Ground Screw Assembly
Product Certifications	
E1	ATEX Flameproof
11	ATEX Intrinsic Safety
N1	ATEX Type n
ND	ATEX Dust
K1	ATEX Flameproof, Intrinsic Safety, Type n, Dust (combination of E1, I1, N1, and ND)
E4	TIIS Flameproof
14	TIIS Intrinsic Safety
K4	TIIS Flameproof and Intrinsic Safety (combination E4 and I4)
E5	FM Explosion-proof, Dust Ignition-proof

Rosemount 3051S Series

15	FM Intrinsically Safe, Division 2
K5	FM Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5 and I5)
E6	CSA Explosion-proof, Dust Ignition-proof, Division 2
16	CSA Intrinsically Safe
K6	CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E6 and I6)
E7	IECEx Flameproof, Dust Ignition-proof
17	IECEx Intrinsic Safety
N7	IECEx Type n
K7	IECEx Flameproof, Dust Ignition-proof, Intrinsic Safety, Type n (combination of E7, I7, and N7)
$E 2^{(4)}$	INMETRO Flameproof
$12^{(4)}$	INMETRO Intrinsic Safety
$\mathrm{K} 2^{(4)}$	INMETRO Flameproof, Intrinsic Safety (combination of E2 and I2)
$E 3^{(4)}$	China Flameproof
$13^{(4)}$	China Intrinsic Safety
$K A^{(5)}$	ATEX and CSA Explosion-proof, Intrinsically Safe, Division 2 (combination of E1, E6, I1, and I6)
KB	FM and CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5, E6, I5, and I6)
$K C^{(5)}$	FM and ATEX Explosion-proof, Intrinsically Safe, Division 2 (combination of E5, E1, I5, and I1)
$K D^{(5)}$	FM, CSA, and ATEX Explosion-proof, Intrinsically Safe (combination of E5, E6, E1, I5, I6, and I1)
Digital Display	
M5	PlantWeb LCD Display
Calibration Data Certification	
Q4 ${ }^{(4)(6)}$	Calibration Certificate
QP ${ }^{(4)}$	Calibration Certificate and Tamper Evident Seal
Terminal Blocks	
T1	Transient terminal block
Conduit Electrical Connector	
GE ${ }^{(7)}$	M12, 4-pin, Male Connector (eurofast ${ }^{(®)}$
GM ${ }^{(7)}$	A size Mini, 4-pin, Male Connector (minifast ${ }^{\circledR}$)
Typical Model Number: 300SMV M R 1A C22 M5	
(1) RTD Sensor must be ordered separately.	
(2) Material specified is cast as follows: CF-8M is the cast version of 316 SST, CF-3M is the cast version of 316L SST, CW-12MW is the cast version of Alloy $C-276, M-30 C$ is the cast version of Alloy 400. For housing, material is aluminum with polyurethane paint.	
(3) For use with Flowmeters with integral RTDs.	
(4) Contact an Emerson Process Management representative for availability.	
(5) RTD cable not available with this option.	
(6) Calibration certificate only provides data for process temperature RTD interface.	
	ble with Intrinsically Safe approvals only. For FM Intrinsically Safe, Non-Incendive approval (option code I5), install in accordance with Rosemount ng 03151-1206 to maintain outdoor rating (NEMA 4X and IP66).

Rosemount 300S Series Housing Kit

Model			
300S	Housing Kit for Rosemount 3051S Coplanar, In-Line, and Liquid Level Transmitters		
Code	Housing Style	Material ${ }^{(1)}$	Conduit Entry
1A	PlantWeb housing	Aluminum	1/2-14 NPT
1B	PlantWeb housing	Aluminum	M20 x 1.5 (CM20)
1 C	PlantWeb housing	Aluminum	$\mathrm{G}^{1 / 2}$
1 J	PlantWeb housing	SST	1/2-14 NPT
1K	PlantWeb housing	SST	M20 x 1.5 (CM20)
1L	PlantWeb housing	SST	G $1 / 2$
2A	Junction Box housing	Aluminum	1/2-14 NPT
2B	Junction Box housing	Aluminum	M20 x 1.5 (CM20)
2 C	Junction Box housing	Aluminum	$\mathrm{G}^{1 / 2}$
2 J	Junction Box housing	SST	1/2-14 NPT
2E	Junction Box housing with output for remote interface	Aluminum	¹/2-14 NPT
2F	Junction Box housing with output for remote interface	Aluminum	M20 x 1.5 (CM20)
2G	Junction Box housing with output for remote interface	Aluminum	$\mathrm{G}^{1 / 2}$
2M	Junction Box housing with output for remote interface	SST	1/2-14 NPT
3A	Remote mount display and interface housing	Aluminum	1/2-14 NPT
3B	Remote mount display and interface housing	Aluminum	M20 x 1.5 (CM20)
3 C	Remote mount display and interface housing	Aluminum	$\mathrm{G}^{1 / 2}$
3J	Remote mount display and interface housing	SST	¹/2-14 NPT
$7 \mathrm{~J}^{(2)}$	Quick Connect (A size Mini, 4-pin male termination)	SST	
Code	Output		
A	4-20 mA with digital signal based on HART protocol		
$F^{(3)}$	Foundation fieldbus protocol		
Code	Options		
PlantWeb Control Functionality			
A01 ${ }^{(4)}$	Foundation fieldbus Advanced Control Function Block		
PlantWeb Diagnostic Functionality			
D01 ${ }^{(4)}$	Foundation fieldbus Diagnostics Suite		
DA1 ${ }^{(5)}$	HART Diagnostics Suite		
Special Configuration (Hardware)			
D1 ${ }^{(6)}$	Hardware adjustments (zero, span, alarm, security) Note: Not available with Housing Style codes 2E, 2F, 2G, 2M, 3A, 3B, 3C, 3J, or 7J.		
Product Certifications			
E1	ATEX Flameproof		
11	ATEX Intrinsic Safety		
IA	ATEX FISCO Intrinsic Safety; for Foundation fieldbus protocol only		
N1	ATEX Type n		
K1	ATEX Flameproof, Intrinsic Safety, Type n, Dust (combination of E1, I1, N1, and ND)		
ND	ATEX Dust		
E5	FM Explosion-proof, Dust Ignition-proof		
15	FM Intrinsically Safe, Division 2		
IE	FM FISCO Intrinsically Safe; for Foundation fieldbus protocol only		
K5	FM Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5 and I5)		
E6	CSA Explosion-proof, Dust Ignition-proof, Division 2		
16	CSA Intrinsically Safe		
IF	CSA FISCO Intrinsically Safe; for Foundation fieldbus protocol only		
K6	CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E6 and I6)		
E7	IECEx Flameproof, Dust Ignition-proof		
17	IECEx Intrinsic Safety		
IG	IECEx FISCO Intrinsic Safety; for Foundation fieldbus protocol only		
N7	IECEx Type n		
K7	IECEx Flameproof, Dust Ignition-proof, Intrinsic Safety, Type n (combination of E7, 17, and N7)		
E2	INMETRO Flameproof		
12	INMETRO Intrinsic Safety		

K2	INMETRO Flameproof, Intrinsic Safety
KA	ATEX and CSA Flameproof, Intrinsically Safe, Division 2 (combination of E1, E6, I1, and I6) Note: Only available on Housing Style codes IA, IJ, 2A, 2J, 2E, 2M, 3A, or 3J.
KB	FM and CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5, E6, I5, and I6) Note: Only available on Housing Style codes IA, IJ, 2A, 2J, 2E, 2M, 3A, or 3J.
KC	FM and ATEX Explosion-proof, Intrinsically Safe, Division 2 (combination of E5, E1, I5, and I1) Note: Only available on Housing Style codes IA, IJ, 2A, 2J, 2E, 2M, 3A, or 3J.
KD	FM, CSA, and ATEX Explosion-proof, Intrinsically Safe (combination of E5, E6, E1, I5, I6, and I1) Note: Only available on Housing Style codes IA, IJ, 2A, 2J, 2E, 2M, 3A, or 3 J .
Digital Display ${ }^{(7)}$	
M5	PlantWeb LCD Display
$M 7^{(8)}$	Remote mount LCD display and interface, no cable; PlantWeb housing, SST bracket, requires 4-20 mA / HART output Note: See the 3051S Reference Manual (document number 00809-0100-4801) for cable requirements. Contact an Emerson Process Management representative for additional information.
$\mathrm{M} 8^{(8)(9)}$	Remote mount LCD display and interface, 50 ft . (15 m) cable; SST bracket, requires 4-20 mA / HART output
$\mathrm{M} 9^{(8)(9)}$	Remote mount LCD display and interface, 100 ft . 31 m) cable; SST bracket, requires 4-20 mA / HART output
Terminal Blocks	
$\mathrm{T} 1^{(10)}$	Transient terminal block
T2 ${ }^{(11)}$	Terminal block with WAGO ${ }^{\circledR}$ spring clamp terminals
T3 ${ }^{(11)}$	Transient terminal block with WAGO spring clamp terminals
Conduit Electrical Connector	
GE ${ }^{(12)}$	M12, 4-pin, Male Connector (eurofast ${ }^{\text {® }}$)
GM ${ }^{(12)}$	A size Mini, 4-pin, Male Connector (minifast ${ }^{(8)}$)
Typical Model Number: 300S 1A A E5	
(1) Material specified is cast as follows: CF-3M is the cast version of 316L SST. For housing, material is aluminum with polyurethane paint.	
(2) Available with output code A only. Not available with approvals. Contact an Emerson Process Management representative for additional information.	
(3) Requires PlantWeb housing.	
(4) Requires PlantWeb housing and output code F.	
(5) Requires PlantWeb housing and output code A. Includes Hardware Adjustments as standard.	
(6) Not available with output code F.	
(7) Not available with Housing code 7J.	
(8) Not available with output code F or option code DA1. Only available on Housing Style codes 3A, 3B, 3C, or 3J.	
(9) Cable supplied is Belden 3084A, rated for ambient temperatures up to $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$.	
(10) Not available with Housing code 3A, 3B, 3C, 3J, or 7J.	
(11) Available with output code A and PlantWeb housing only.	
(12) Not Intri	vailable with Housing code 7J. Available with Intrinsically Safe approvals only. For FM Intrinsically Safe, Division 2 (option code I5) or FM FISCO ically Safe (option code IE), install in accordance with Rosemount drawing 03151-1009 to maintain outdoor rating (NEMA 4X and IP66).

ACCESSORIES

Rosemount Engineering Assistant (EA)
 Software Packages

The Rosemount Engineering Assistant software supports flow configuration for the 3051S MultiVariable and 3051S FOUNDATION fieldbus. The package is available with or without modem and connecting cables. All configurations are packaged separately. For best performance of the EA Software, the following computer hardware and software is recommended:

- Pentium, 800 MHz personal computer or above
- 512 MB RAM
- 350 MB of available hard disk space
- Microsoft ${ }^{\circledR}$ Windows ${ }^{\text {TM }} 2000$ or XP Professional

Engineering Assistant Software Packages

Code	Product Description
EA	Engineering Assistant Software Program
Code	Software Media
2	EA Rev. 5 (Compatible with 3095, 3051S FoundATION fieldbus, and 333)
3	EA Rev. 6 (Compatible with 3051SMV only)
Code	Language
E	English
Code	Modem and Connecting Cables
O	None
H	Serial Port HART Modem and Cables
B	USB Port HART Modem and Cables
C	FounDATION fieldbus PCM-CIA Interface Card and Cables
Code	License
N1	Single PC license
N2	Site license
Typical	Model Number: \quad EA \quad 2 \quad E \quad N1

Accessories

Item Description	Part Number
Serial Port HART Modem and Cables Only	$03095-5105-0001$
USB Port HART Modem and Cables Only ${ }^{(1)}$	$03095-5105-0002$
Foundation fieldbus PCM-CIA Interface	$03095-5108-0001$
Card and Cables Only	
Long-life Power Module for Wireless option	$00753-9220-0001$

(1) Supported by Snap-On EA with AMS Device Manager version 6.2 or higher.

Standard Terms and Conditions of Sale can be found at www.rosemount.com/terms_of_sale
The Emerson logo is a trade mark and service mark of Emerson Electric Co.
Rosemount, Annubar, SuperModule and the Rosemount logotype are registered trademarks of Rosemount Inc.
PlantWeb is a mark of one of the Emerson Process Management companies.
Instrument Toolkit, Saturn, MultiVariable and Coplanar are trademarks of Rosemount Inc.
Eurofast and Minifast are registered trademarks of Turck Inc.
HART and WirelessHART are registered trademarks of the HART Communications Foundation.
ASP is a trademark of the Emerson Process Management companies.
Syltherm, Dow Corning, and D.C. are registered trademarks of Dow Corning Co.
Neobee M-20 is a registered trademark of Stephan Chemical Co.
FOUNDATION fieldbus is a trademark of the Fieldbus Foundation.
WAGO is a registered trademark of WAGO KontakHechnik GmbH, Germany.
All other marks are the property of their respective owners.
© 2008 Rosemount, Inc. All rights reserved.
These 3051S products may be protected by one or more of the following: U.S. Patent Nos. 4466290; 4612812; 4866435; 4988990; 5083091; 5122794; 5166678; 5248167; 5287746; 5333504; 5585777; 5899962; 6017143; 6119047; 6182019; 6295875; 6457367; 6487912; 6568279; 6571132; 6609427; 6643610; 6658945; 6898980; Des. 439177; Des. 439178; Des. 439179; Des. 439180; Des. 439181; Des. 441672. May depend on model. Other U.S. and foreign patents issued and pending.

Emerson Process Management

Blegistrasse 23
P.O. Box 1046

CH 6341 Baar
Switzerland
Tel +41 (0) 417686111
Fax +41 (0) 417686300

Emerson FZE

P.O. Box 17033

Jebel Ali Free Zone
Dubai UAE
Tel +97148118100
Fax +97148865465

Emerson Process Management Asia Pacific Pte Ltd
1 Pandan Crescent
Singapore 128461
Tel +65 67778211
Fax +65 67770947
Service Support Hotline : +65 67708711
Email : Enquiries@AP.EmersonProcess.com

[^0]: (1) Stated reference accuracy equations include terminal based linearity, hysteresis, and repeatability, but does not include analog only reference accuracy of $\pm 0.005 \%$ of span.
 (2) Specifications for process temperature are for the transmitter portion only. The transmitter is compatible with any Pt 100 (100 ohm platinum) RTD. Examples of compatible RTDs include Rosemount Series 68 and 78 RTD Temperature Sensors.
 (3) RDG refers to transmitter DP reading.
 (4) Ultra for Flow is only available for 3051S_CD Ranges 2-3 and 3051SMV DP Ranges 2-3. For calibrated spans from $1: 1$ to $2: 1$ of URL, add $\pm 0.005 \%$ of span analog output error.

[^1]: (1) Lower ($L R L$) is $0 \mathrm{inH}_{2} \mathrm{O}(0 \mathrm{mbar})$ for Ultra for Flow.
 (2) When specifying a 3051S_L Ultra, use Classic minimum span.
 (3) Assumes atmospheric pressure of 14.7 psig (1 bar).

[^2]: 3051SMV__ 3: Differential Pressure \& Temperature 3051SMV__ 4: Differential Pressure 3051S_CD: Coplanar Differential Pressure
 Operates within specifications between static line pressures of 0.5 psia and 3626 psig;

 4500 psig (310,3 bar) for option code P9
 6092 psig (420 bar) for option code P0 (Classic only)
 Range 0: 0.5 psia to 750 psig (0,03 to 51,71 bar)
 Range 1: 0.5 psia to 2000 psig (0,03 to $137,9 \mathrm{bar}$)

[^3]: (1) Process temperatures above $185^{\circ} \mathrm{F}\left(85^{\circ} \mathrm{C}\right)$ require derating the ambient limits by a 1.5:1 ratio. For example, for process temperature of $195^{\circ} \mathrm{F}\left(91^{\circ} \mathrm{C}\right)$, new ambient temperature limit is equal to $170^{\circ} \mathrm{F}\left(77^{\circ} \mathrm{C}\right)$. This can be determined as follows: $\left(195{ }^{\circ} \mathrm{F}-185^{\circ} \mathrm{F}\right) \times 1.5=15^{\circ} \mathrm{F}$, $185{ }^{\circ} \mathrm{F}-15^{\circ} \mathrm{F}=170^{\circ} \mathrm{F}$
 (2) $212{ }^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$ is the upper process temperature limit for DP Range 0.
 (3) $220^{\circ} \mathrm{F}\left(104^{\circ} \mathrm{C}\right)$ limit in vacuum service; $130^{\circ} \mathrm{F}\left(54^{\circ} \mathrm{C}\right)$ for pressures below 0.5 psia.
 (4) $-20^{\circ} \mathrm{F}\left(-29^{\circ} \mathrm{C}\right)$ is the lower process temperature limit with option code PO.
 (5) $32{ }^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ is the lower process temperature limit for DP Range 0 .
 (6) For 3051 S _ $\mathrm{C}, 160^{\circ} \mathrm{F}\left(71^{\circ} \mathrm{C}\right)$ limit in vacuum service. For 3051 SMV _ _ 1, $2,140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$ limit in vacuum service.
 (7) Not available for 3051S_CA.
 (8) Upper limit of $600{ }^{\circ} \mathrm{F}\left(315^{\circ} \mathrm{C}\right)$ is available with 1199 seal assemblies mounted away from the transmitter with the use of capillaries and up to $500^{\circ} \mathrm{F}\left(260^{\circ} \mathrm{C}\right)$ with direct mount extension.

